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PREFACE
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Mr. Garabed Zartarian; Mr. John H. Thompson; and Mr. Michael Tomayko.

This work was performed under the Structural Mechanics Group of Kaman
AviDyne headed by Mr. Emanuel S. Criscione.
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SECTION I
INTRODUCTION

NOVA-2' (Nuclear Overpressure Vulnerability Analysis, Version 2) is
a digital computer program representing a complex analysis of aircraft
structural elements subjected to nuclear overpressure effects. This
version contains extensive modifications of NOVA (ref. 1, now also
referred to as NOVA-1l) with expanded analytical capabilities, improved
accuracy, and more efficient computer utilization. This document
presents a complete description of the analytical methods used and of
the computer program, including guidelines for running the program and
example problems.

The NOVA-2 program provides a technique for predicting the elastic
and inelastic response of aircraft structural elements to the transient
pressure loads associated with the blast wave from a nuclear explosion. 3
These high intensity pressure loads are treated separately from the gust
loads due to the blast wave and are associated with the initial reflec- ;
ted pressure which occurs auring diffraction of the blast wave around
the structure. Because the pressures exist for such a short time, they

excite high frequency, secondary structure such as skin panels, string-

ers, longerons, frames, ribs, canopies and radomes. The gust, or post
diffraction, loads tend to excite low frequency, primary structural
surfaces such as the wings, fuselage, and horizontal and vertical tails.
Therefore, the separation between pressu-e (often referred to as over-
pressure) and gust effects on aircraft structure is generally based on

secondary high frequency structure and primary low frequency structure.

The prograw determines the slant range between the aircraft and
point of burst rfor specified levels of structural damage as a function
of structural element; weapon yield, orientation and height of burst;

3 aircraft speed and altitude; and degree of probability that the level of
damage is incurred or exceeded. Likewise, it determines the response of

structural elements for a specified slant range.

i
1
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4 single element dynamic analysis technique, which considers both
linear elastic and inelastic deformations and assumes that the element 1
does not interact with adjacent elements, reduces the complexity of the
modeling and analysis, and thus provides a solution more rapidly than a

A\ or

finite element analysis. The errors introduced by considering isolated
structural elements rather than multi elements appear to be reasonable

for most components when compared with those introduced by other uncer-

é tainties associated with the analysis. Hcwever, for structures with
; rapidly changing cross section, such as a nose radome, the errors may be

unacceptable. i

| 3

; The program uses a quasi-strip method for predicting the pressure

} loading on the lifting surfaces of the aircraft prior to the arrival of
E the blast wave. The pressure induced by the thickness of the airfoil is
neglected and the pressure loading is assumed to be a function of and

directly proportional to the angle of attack. The pressure loadings
induced on the wing and tail surfaces by the blast wave are predicted ‘
using linear acoustic theory and the assumption that the airfoil sec- 4

tions can be represented by their mean-camber lines.

The program predicts, prior to and during diffraction of the blast
wave, the pressure loading on the surface of the fuselage by relating 3
the fuselage to an equivalent body of revolution with the same dis- a
tribution of cross-sectional area along its length and by applying the
reflection theory for the interaction of a shock wave with a flat

surface.

A 1-KT nuclear standard, based on data obtained from the AFWL
SPUTTER and SAP fluid dynamics programs, provides the time-dependent
free-air blast characteristics for the BLAST routines. For near-ground

bursts where the blast wave strikes the ground and is reflected, two

models are now optional in NOVA-2: 1) an empirical model, which describes

the wave forms associated with regular reflection and the transition to
Mach reflection, and 2) a comprehensive data tape, based on the REFLECT
code, which provides a time history of the ground-reflected blast char- j

1 acteristics. K
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The program consists of three distinct routines, NOVA, DEPROB
; (Dynamic Elastic Plastic Response of Beams), and DEPROP (Dynamic Elastic
' Plastic Response of Panels), written in FORTRAN IV. n

The NOVA routine is the master routine which controls the logic of
the overall program. It contains the subroutines for predicting the
aerodynamic flight loads and the blast pressure loads that are applied
to the lifting surfaces and fuselage during subsonic and supersonic
flight, and for determining the slant range at which a structural ele-
ment incurs damage which has been specified on a probabilistic basis.

The DEPROB routine provides the response of aircraft structure such

as stringers, longerons, frames, ribs, and conical or cylindrical
radomes which can be represented by an annular cross section. The
method of analysis used in this routine applies to beams which can be
modeled in one dimension by a series of discrete masses interconnected
by weightless bars. Major additions to DEPROB in NOVA-2 are the ability
to analyze elements with variable cross section, the addition of simply
.supported and free edge conditions, an improved elastic-plastic stress-
strain model, and the inclusion of rib buckling as a failure mechanism.

YT T T A

U PR PO P SO

i

The DEPROP routine provides the response of aircraft skin panels, y
canoples, and radomes that can be approximated by a cylindrical panel.
The linear elastic option applies to single and multilayered panels of
isotropic or orthotropic material, and the elastic~plastic option
applies to single layer panels of isotropic material. DEPROP has been
modified to include the following: symmetric or nonsymmetric combina-

tions of clamped or simply supported edge constraints, a much improved

eleéstic-plastic stress-strain model, and improved overall accuracy.

The NOVA-2 program as a whole represents a much more efficient

code than NOVA-1, requiring less computer core and time. This is

accomplished by making more extensive use of overlaying techniques and
through improved computational techniques.

=
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SECTION II
BLAST MODELS

In order to simulate the overpressure effects of a blast wave
emanating from a nuclear explosion, NOVA-2 provides the analyst with a
choice of ground reflection models when ground reflection is important.
A one-dimensional free-air blast model is the basis of both models, and
is used when ground reflection is not important. Ome ground reflection
model is a semiempirical functional curve fit (that used in NOVA-1);
the second is a two-dimensional data tape generated by a hydrodynamic
computer code. These two modcls are described in subsections 2.1 and

2.2, respectively.

The free-air blast model in NOVA-2 is the most recent AFWL 1-KT
curve fit model available (refs. 2 and 3), which is based on the AFWL
1-KT nuclear standard data tape (ref. 4). Figure 1 compares overpres-
sure versus range for both free-air models. For historical complete-
ness, the IBM Problem=-M curve contained in reference 5 is also shown.
By coincidence this curve nearly coincides with that of the current
curve fit model, and the differences are indistinguishable in figure 1.

2.1 ANALYTICAL GROUND-REFLECTED BLAST MODEL

The first ground-reflected blast model is a semiempirical, two-
dimensional model, identical in form to that used in NOVA-l. The only
differences are minor changes in curve fit coefficients. The basic

mathematical model is documented in reference 6.

2.2 REFRA GROUND-REFLECTED BLAST MODEL

The second ground reflected blast model available in NOVA-2 is in
the form of a two-dimensional blast tape (logical file TAPE1lQ), read and
interpreted by the REFRA routine (ref. 7). The original data base is
generated by the REFLECT code (ref. 8) and subsequently processed for
more efficient use by REFRA.

<l




Ay ohd Lt fal Adll

T TR

b
|
‘

s e AR

12A91 ®vag je

M uotrsoydxqg IN-1 103 3duelIsIg ‘SA aanssaxdisag - 1 aandi14
(18d) Say
0001 0’0% 0’02 ool oS 0’2 L] ¢ o 20 1o
00!
002
0o0s 3 '
» wy
~ L]
o
z
-4
»
fos
000! 8
3dvi z
GUVANVIS TMJV =
=
cooz 2
N N3I80Ud WO
SNOILONNS M4V //
// 000G
0000!




Only data pertaining to region III of figure 2 are provided on T
tape, as the undisturbed region, region I, merely represents ambient

conditions, and data for region II are provided by the free-air model.
A moving mesh model in the REFLECT code provides data behind the shock
fronts which are precisely defined and free of the complications asso-
ciated with various artificial smoothing processes. The REFRA routine
searches the data tape to determine which region is appropriate and
returns the corresponding blast data. It should be readily apparent
that because the data tape is limited to regions behind the Mach and
reflected shocks, great savings in tape length and computer search time
are realized. Accordingly, a very comprehensive time history of the
reflected wave, and the region behind it, is made available on tape. )

. Each REFLECT run, and hence each corresponding data tape, is char-
acterized by a unique scaled height of burst (above ground level),
scaled to 1-KT at sea level. To select the appropriate tape for the
problem of interest, figure 3 shows the relationship of relevant geo-

metrical parameters.

Once the ground altitude (Hg)’ the aircraft altitude (H) and the
vertical separation between the aircraft and the burst (z) are selected,
the height of burst is uniquely specified (HOB = H =~ Hg - 2). The
scaled height of burst (SHOB) 1is then determined from the following
relationship, making use of modified Sachs scaling:

1/3
pa/po /
SHOB ~ HOB

w

where W is the yield in kilotons, P, is the ambient pressure at the air-
craft altitude, and Po is the ambient pressure at sea level, taken to be
14.696 psi.

It can be seen that the altitude of the aircraft relative to the
burst must remain constant for problems using a single data tape.

Hence, when the program iterates to find a critical slant range, the

iteration is restricted to constant aircraft and burst altitudes for
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this ground reflection model, whereas the method described in subsecc-
tion 2.1 does not have this limitation since the empirical model will i
handle any height of burst. The REFRA model will, in general, also take !
slightly more computer time for problems involving ground reflectiom.

It should be noted, however, that the REFRA model offers a much more )
sophisticated, complete description of the phenomena of ground reflec- 1
tion. 3
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! SECTION II1
u PREBLAST AND BLAST-INDUCED LOADING

e Al ek

3.1 LOADING ON LIFTING SURFACES

The pressure loading at a point on a lifting surface of an air-
craft engulfed by a blast field may be approximated in terms of two i
pressure distributions; the first associated with the flow prior to
blast arrival and the second induced by the blast wave. The form used

is as follows:

1
P, = P, (Aprss + Acpwg) 5 PV, (1)

where

s en A O
s

Py and p, are the pressures at a point on the lower and upper

surfaces, respectively

ACp and Acp are the steady-state and transient pressure coeffi~ i
cients, respectively, at the point on the lifting ?
surface

Yes and wg are the steady-state and blast-induced flow velocities

. normal to the lifting surface, respectively, at the

point on the surface

] P is the instantaneous density at the point on the
? j surface
Vr is the resultant velocity of the steady-state flow

% plus the blast-induced flow at the point on the

: surface

The procedures by which ACp and Acp are calculated for lifting surfaces

in the analysis are presented in the r2mainder of this subsection.

"zye

A O
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The pressure incisase on the lower surface, Py = Py is taken
equal in magnitude and opposite in sign to the pressure decrease on
the upper sucface, Py ~ Pas where p_ is the pressure at the point in

the absence of the 1{fting surface.

Py " P, +% (py - 7,) )
P, * P -% (py - p) (3)

Since Py and P, cannot physically achieve negative values, these quan-
tities are set equal to zero within the computer analysis whenever
either becomes negative according to equation (2) or equation (3); how-
ever, the correct value of P, - Py» as given by equation (1), is

retained in the analysis.

3.1.1 Preblast Loading

This section provides formulations for predicting the pressure
loading coefficient ACP on lifting surfaces before exposure to blast
environment. Although more elaborate techniques are available, i.e.,
surface methods, the emphasis here is on practical and simplified tech-~

niques which are more appropriate for a vulnerability code. The form-

ulations presented here are for subsonic, transonic, and "low to
medium" supersonic flight ranges and consider typical classes of wing
or talil planforms during a symmetric £light maneuver. The derived

equations form the basis for the program in the vulnerability code.

A rigorous approach cannot be offered for calculating the
pressure coefficient at arbitrary points on all possible planforms
over a broad range of Mach numjers. From the practical point, it is
necessary to introduce many simplifications. These are covered in

the discussions to follow.

-11-
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The surfaces are assumed to be flat plates. "his means that
the incremental pressure at any point on the planform is due to angle of
attack only, and thickness-induced pressures are neglected. This assump-
tion is 2 reasonable one, except possibly at points near the leading
edge. Furthermore, the angle of attack, a, is assumed to be small, so
that the pressure distributions are directly proportional to the angle
of attack.

The general pianform to be considered is depicted in figure 4,
The planform is assumed to have a line of symmetry which is parallel to
the free-stream direction. The tip chord is approximated by a line
parallel to the centerline of the planform.
8, + 58

,._EZ_T (%)

For purposes of calculating the pressure coefficient, ACp, the actual

planform is replaced by a swept wing which has at station y the same

d
coordinates and slopes of the leading and trailing edges[xL,_ [F] g
d

Xps ah as the actual planform. Consider the specific planform in
figure 5. The actual (semispan) planform is that described by the
straight line segments Oabcde0. In calculating the pressure at point 1,
the equivalent planform will be Oagf0. On the other hand, for point 2,
the equivalent swept wing will be idchi. Thus, the equivalent swept
wing is one with leading and trailing edge sweeps equal to the leading
and trailing edge sweeps of the actual wing at station y. This method
may be considered as a '"quasi-strip" method in that the strip at the
pressure spanwise station determines the planform. Yet it is not a
strip method per se because finite span effects are accounted for
approximately. In fact, if the slopes of the leading and trailing edges

of the actual planform dare constant, the equivalent planform is the

actual planform regardless of where the pressure is to be determined.
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Figure 4. Actual Planform Geometry




el el Sl L ST L

5&

Figure 5.

Method of

>y,

Developing Equivalent Planform

Lo i ool dal i

g

e Dt 2 han el




G bake Sl o Lot ds s Akt

Two possibilities for the semispan, s, can arise: Referring
to figure 6, the semi-span of the equivalent wing can be s with the tip
chord greater than zero or 5 with no tip chord. The situation in (b)
will not occur too often for actual wings. An example when this occurs
is given by (c), where the pressure i{s to be computed for a point

y < ;. Provisions are made in the formulation and in the computer
program to handle cases of types (b) and (c), although they are not
expected to be used very often. These cases are numbered 2, 7, 8 and

9 among the possibilities listed in table 1.

The equivalent planform geometry is presented in figure 6.
The coordinate systems (x, y) or (£,n) of the original planform are
retained for convenience, so that the coordinate of the pressure point
(x,y) on the actual planform is also the (x,y) on the equivalent plan-
form. It should be noted that the leading and trailing edges intersect

the centerline at
x(0) = x -y tad (5)
x,(0) = x, -y tanh; (6)
When the leading or trailing edge is curved or is composed of
segments of straight lines, several equivalent planforms are possible.
Each such planform will have its leading and trailing edges described
by
x (") = x +(n-y) tanh )

xT(n) = Xy ¥+ (n -y tanAT (8)

and, in general, the planform apex will not be at (£,n) = (0,0). The
chord at n is defined by the expression

B . T o e T L

el L
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c(n) = x,(n) = x(n) = (x, - x) + (n-y) (tanA -tand;) (9)
The chord becomes zero when

ey e TN
tanAL - tanAT

s (10)

If 8, > s, the equivalent planform is terminated at n = s, and corre-
sponds to (a), figure 6.

1f 5 < s, the equivalent planform is terminated at n = 8, and the

taper ratio will be zero. This corresponds to (b), figure 6.

Referring to table 1, Cases 1 and 2 are subsonic situations,
Cases 3-9 are supersonic, while Case 10 is transonic. For supersonic
flight, distinctions have to be made to reflect leading and trailing
edge conditions. Let B = 41;2:11. If B cot A > 1, the edge is super-
sonic; if B cot A < 1, the edge is subsonic.

.

in the absence of a better way of determining transonic pres-
sures, Case 10 is programmed to proceed as follows: 1If 0.8 <M < 1.2,
the pressure is computed for M = 0.8 and M = 1.2 according to appro-
priate Cases 1-9. The pressure is then interpolated linearly for the
pressure coefficient at the desired Mach number according to

1.2 - M M - 0.8
(8C)0. 8emMe1.2 ™ ( 0.4 ) (8C ) ya0.8 +( 0.4 ) (AC ey (D

Table 2 presents a list of certain planform parameters which

are useful in the development of the pressure coefficients.

Different approaches are followed for the subsonic and super-
sonic cases. For supersonic cases, the pressures may be obtained

directly from linearized steady supersonic flow, with additional
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approximations for certain regions of the planform. In contrast, for

the subsonic cases, the spanwise loadings (lift per unit span) are

first determined. The pressures are then determined by assuming a

chordwise pressure distribution and determining an "amplitude" for this
distribution such that the pressures integrated over the chord give

the correct lift per unit span at that station. The distribution used

for all subsonic Mach numbers is a modification of the chordwise dis- -
tribution from thin airfoil theory, and is illustrated in figure 7.

Each of the cases will now be discussed individually. |

a. Subsonic Cases (M < 0.8)

Given the location (x,y) on the planform, the quantities ]

X1 Xpo tanAL, tanAT can be determined from the planform geometry. If
s, =y + xT xL

1 tanAL - tanAT 1

is appropriate. Only Case 1 will be discussed because Case 2 is iden-

< g, Case 2

> g, Case 1 is considered; if s

tical with Case 1, except s is replaced by 8y and the taper ratio A

is set equal to zero. The parameters

ot e L e bt YR i e b

*
Y - BA
s’ 8, AB, A, BA ( p )

may be computed according to the expressions given in table 2. Using

F PO TR

these parameters, the spanwise loading at y

e (f) | &2 (12) |

*
xk of reference 9 ig taken equal to 1.0.
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, 8ince x = 1 (13)

may be obtained by interpolation from the prepared curves of reference 9.
Since these interpolations are over multiple variables, expressions

were derived for approximating the curves of figures 3 and 4 of ref-
erence 9 to facilitate the interpolation process. The pressure differ-

ence coefficients are then computed according to

= y 2y - s i
ac, CLa ™ Q (s) £ (x) (2 + ;1—-_—": [tan A, - tan AT]) (14)

where

11.22 (;T-_—’:L‘L) » X S % < 0.05 X, +0.95 x

f(x) = (15)
) xT - X
0.12874;—_—,‘:- 5 0.05xT+0.95xL <X < X

b. Supersonic Cases (M > 1.2)

For supersonic flow, the planform is divided into distinct
regions by Mach lines emanating from leading edges of the root chord and
the tip chord and by "reflected" Mach lines from other edges as shown
in figure 8. For each of these regions, different pressure expressions
apply. The particular region in which the point of interest (x,y) lies
must be identified as to type of region so that an appropriate pressure
formula may be used. To illustrate this brief description, consider
Case 3. Depending on the sweep of the Mach line, AML - tan-IB, three

possible situations may arise. These situations are depicted in
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Figure 8. Various Pressure Regions on Planform
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figure 8 and are described in references 10 and ll1. For points in

Region I, the ACp would be the same :a on an infinite wing with the

same sweep as the leading edge, and is

4 cot A !
_L (16) ,
VszcoczAL -1 !

For Region II, the ACp may be obtained from the results for the corre-

(ACP)I -

sponding region on a delta wing with supersonic leading e-“ges.

4 cot A ! 2 2
- L .2 -1 l -8 tan” v
(ac )1y ————t— [1-Zsin J

VBzcn:n:2 L 1

Bz(cotZAL-canzv)
an

where

tanzv = 4 )2
lx- (x.L-yL tanAL)‘

For Region III, the ACp may be defined by:

(“Cp) - 8 cot AL

III
T -JS cotl\L-l

(1 + 8 cot A )(s-y)
tan-l J 5 (18)

cot AL[x-(xL—y tan AL)—s(tan AL)-B(s-y)]

pere




solutions.

system by

where

and

Simple expressions cannot be found for Regions IV and V.
(x,y) in Region IV of figure 8(b), the ACp is interpolated linezrly

{ parallel to the trailing edge.

For a point

3 The Mach line patterns for Cases 4, 5, and 6 are as shown in

between the pressures at points a and b where (ACP)II and (ACP)III apply.
If (x,y)1 lies in IV, but ahead of the dashed line in figure 8(c), the
same procedure may be applied. For (x,y)l in IV but behind the dashed
b line, the ACp is interpolated linearly between points c and d; point ¢
has (ACP)II and ACp for point d is exactly 0. For points in Region V,
such as (x.y)z, ACp is also interpolated linearly between points c and
d. In all cases, the line along which interpolation takes place is

figure 9. For the above cases, only (Acp)VI can be obtained from known

Using the solution for a delta wing with subsonic edges

4 cot
(ac)) h!
p'Vl 2 2
\Il - tan l\L tan” v E(k)
2
2, y J
tan v lx-(xL-ytan AL)‘

E(k) = complete elliptical integral

/2
-f'll-kzsinzzdz;k-Jl-Bzc
0

ot2 A

L

1 (refs. 10 and 11), (ACP)VI is defined in terms of the present coordinate

(19)

(20)
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For Regions VII and VIII, etc., approximate pressures may be obtained
through interpolation, using the pressures along the boundaries of
Region VI, and the fact that the pressure must go to zero at the sub-
sonic trailing edge and the tip edge.

Cases 7, 8 and 9, which are shown in figure 10, can be
considered as subcases of the previous Case 3, and exhibit the ssme type
of regions. Therefore, the Acp'o obtained previously also apply here.

c. Transonic Cases (0.8 < M < 1.2)

The pressure coefficient (ACP) for 0.8 <M < 1.2 may be
estimated by linear interpolation over M utilizing the Acp's for
M=0.8and M= 1.2, as shown by equation (11).

3.1.2 Blast Airloads on Lifting Surfaces

a. General Discussion of Method

b’ Ak Bt b A

The equations for the aerodynamic loads coefficient,
Acp due to a blast wave are presented in this section. These coeffi-
cients are used in equation (1) for determining the local pressures. ’

The problem to be addressed is the detq;mination of Ac_ as a function

S

of position and time for arbitrary aircraft speed, blast orientation,
and blast strength.

il

Equations for predicting the blast-induced airloads on
lifting surfaces for arbitrary strength of the blast shock are not
available. References 12 through 18 have however demonstrated that
predictions of the difference in loading between opposite surfaces of a 1
wing or tail surface exhibit extensive areas of good agreement with

measured loadings where the prediction is based on acoustic theory.

Acoustic theory as applied to thin airfoils is based on
the assumption that the airfoil section of a wing or tail, for example,
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is thin enough relative to the chord and span that the section can be
replaced by a line, in this case the camber line. The flow is assumed
to be attached to the surface. Acoustic theory has been demonstrated by
references 12 through 18 to provide fairly good agreement with measured

airloads due to blast and shock waves when the comparison was made in
terms of Acp- There are a few exceptions to this which must be discussed.

One particular region of the shock loading that has been
found to differ from acoustic predictions is in the vicinity of the
shock front of a blast-type wave. The measured distribution of Acp is
found to have a flat-top peak here, in contrast to the singularity
predicted by acoustic theory, e.g., reference 17, figure 5. However, it
is important to note that the integral over the airfoil of the measured
loading coefficient AcP is found to agree quite well with the theoreti-
cal prediction of acoustic theory, even to blast-induced angles of
attack as high as 30 degrees, e.g., reference 17, figure 6a. This
result is similar to the well-imown leading-edge singularity for sub-
sonic airfoils predicted by linearized theory, where in'practicc, Acp is
found to rise to large values near the leading edge. Higher observed
values of Acp further rearvard of the leading edge are found to compen-
sate for the absence of any singularity, however, tendiag to make the
integral over the airfoil of measured Acp agree better with theoretical

predictions.

At large blast-induced angles of attack, the flow even-
tually separates from the upper surface, causing Acp to drop below the
predictions of thin-airfoil theory. Experiments which demonstrate the
development of this separation with time are described in references 12
and 17. Because the separation affects the loading at long times rela-
tive to the time expected for a typical aircraft surface to respond
structurally to the blast overpressure, no attempt is made here to
include the complicated variations in loading history at the late times
assoclated with flow separation. It should also be noted that the sepa-
ration occurs on the low-pressure side of a wing or tail which would

generally not be critical to the overpressure effects.
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It should also be noted that the nonlinearities in the
pressure on the two surfaces tend to compensate each other; the nonlinear
increase in Py = Pg with angle of attack is accompanied by a nonlinear
increase in P, = Pg > although the latter tends to be smaller. There-
fore, Acp tends to show less nonlinearity with angle of attack than do
either of the other quantities. No general technique is available at
present for predicting nonlinear loadings for the general cases of
interest, including eifects of shock orientation, airfoil speed, etc.

The linear acoustic theory has been developed for a wide variety of

cases, 80 it 1s employed in the present work.

After a blast wave impinges on a rectangular wing or
tail, the pressures generally tend to return to equilibrium much more
rapidly from waves moving in a chordwise direction than moving spanwise.
Therefore, the analysis will be based on strip theory, considering
strips in a chordwise direction. Spanwise effects are expected to
take place over times which are long compared to the structural response

of interest for overpressure.

Table 3 contains seven blast loading cases of interest
as functions of the airfoil Mach number, M, and the gust Mach number,
Mg, of the blast shock. For these cases, there are seven forms of the
equation for Acp.

In the application of the equations, both Mach numbers
are taken relative to the flow behind the blast shock, which was demon-
strated in reference 14 to provide the best correlation of the airloads
with experimental data. The blast radius is assumed to be very large

relative to the dimensions of a wing or tail chord, so the blast prop-

erties could be taken at any convenient point relative to the chord;
the blast properties will be taken at the first point of blast inter-
cept, either the leading or the trailing edge of the airfoil, for
determining the blast Acp.
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The Mach number of the airfoil relative to the flow
behind the shock is M = vr/'Z' where Vr is the velocity of the fluid
behind the shock relative to the airfoil and a, is the speed of sound
I behind the shock. The velocity diagram is shown in figure 11, where V
' is the airfoil velocity relative to the undisturbed fluid ahead of the
is the fluid velocity of the blast wava.

shock, and vy

Relative to the fluid behind the shock, the shock velocity
is V. = Vo where V' is the shock velocity relative to the undisturbed i
fluid ahead of the shock.

The shock correlations carried out in references 14 and
17 indicate that the envelopment rate of the shock wave is to be con-
sidered relative to the "equivalent' airfoil sketched in figure 11,
vwhere the equivalent airfoil is aligned with the total flow, V., behind
the blast shock. Then, the time At for the undisturbed shock to pass 1
over the airfoil is given by

V. - vb

r + cos(¢ - °2) = % At

[¢]

(21)

where ¢ is the angle between the shock outward normal and the plane of
the actual airfoil. The positive sign applies for shocks impinging at
the leading edge first and the minus sign for shocks impinging at the
trailing edge first. Defining the gust Mach number, Mg, of the shock

by

(22)

T

and then combining the equations gives
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M+M = +

. (23)

")

Note that Mg can be positive or negative, depending upon the shock
orientation relative to the equivalent airfoil; positive for shocks
arriving from the front and negative for shocks arriving from the rear.
Also, because a shock wave 1is subsonic relative to the fluid behind it,
the abgolute value of Mg can be less than unity, thus explaining the

presence of such cases in table 3.

b. Diescussion of Methods for Various Cases of Airfoil and

Shock Mach Numbers

The wave diagrams used here for the seven cases are drawn
with the coordinates fixed on the undisturbed fluid at rest ahead of the
blast wave in the absence of the airfoil. The airload equations which
correspond to figures 12 through 18 are listed in tables 4 through 10.
Acoustic theory for thin airfoils assumes that all perturbations to the
fluid due to the airfoil and the shock wave are weak. Therefore, acous-
tic theory is based on the assumption that the angle of attack at all

times is small relative to a radian.

The X axis 1s directed forward with the origin at the
point of shock intercept with the leading edge (or with the trailing
edge, if the trailing edge is intercepted first) of the airfoil. The
trace of the leading edge 1s represented by Line I in figures 12 through
18. The X coordinate is scaled with the chord, ¢, so X = -1 at the
trailing edge at the time of intercept. The other coordinate in the
figures is reduced time T, where T is equal to real time t scaled with
the ambient speed of sound, a, and the chord, c¢c. The trace of the

trailing edge of the airfoil is represented by Line II.

The equations for Acp are given in terms of the actual
distance x and the real time, with x = ¢ at the trailing edge. Actual

distances and times are related to the scaled distances and time by

-34-
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Figure 18.

Airload Regions on Airfoil
Case 7 (M > 1, Mg < =M)




, Table 4
F AIRLOAD EQUATIONS FOR CASE 1 M<1, Mg > 1)
;
: Line Equation
I x =0
11 X = C
III X = (M + Mg)at %
v x = (M + 1l)at
1+ M
\"/ X = F*‘_Mg c+ (M- 1at
' VI X =+2"c+ (M- 1at
] T +M
2C
| e t = I (I-Wa
Region 1
Mg
dc_ (t) = 4 )
Py (M_2 - 111/2 M
g
' Region 2
. 172
L (M+Mg)[(l-M)at +x]-(l+Mg)c
' ) 2 -1
Ac_ (x,t) = 4c l - = tan
(1 +M,)(c - x)
| g
| |
F }Region 3 |
t - t
: | 5 Mo+ Mg M + 1ljat - x 1272 |
; e (x,t) = Ac l - = tan-1l '
! P3 p1 ! M -1 X |
[ o |
| |
| (M_-1) (M_+M) [ (M+1)at - x] ] 172 !
2 M g g
] | Sy /
r : Mg(l + M) X '

~40-

" — 2 il il e o il




et tioaduR R

Lot

T —

- “ﬂ“’,.-,TMW“ L s et

Table 4 (Cont'd) |

AIRLOAD EQUATIONS FOR CASE 1 (M < 1, Mg > 1)

Region 4

Acp (x,t) = Acp (x,t) + Acp (x,t) = Ac_ (t)

4

Region 5
1/2
c=X
Acps(x,t) = IT] d(t)
where
1/2
d(t) = Ac ( t) | ———
Py VI ¢ = X1
2
= c+ (M -1lat
xVI 1+ M
Region 6
Ac (x) = g 1/2 [c;x.! 1/2
Pg (1-M°] J

2 3 P
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AIRLOAD EQUATI

Table 5§

ONS FOR CASE 2 (M.< 1, 0 < Mg < 1)

Line Equation
I x =0
II X = C
= ITTJ x = (M + Mg)at
v x = (M + l)at
2
v X = c + (M- 1l)at
M+l
2¢C
Vi t = I a
Region 1
(M#M_) [(1+M)at - x] 1/2
Ac_ (x,t) = 8 li_m g
P " (14 ) x
M [(1-Mg)x]'/% + {(M+M_) [ (1+M)at-x]}}/?
* 2 1/; 1o Mg 2
o 1 /2
M1 Mg ] [(14M) {x- (M+Mg)at}] /
Region 2
8 1 (M+#M ) [ (1+M)at~-x] 1/2
Py L4 1+M (1+Mg) x
| M [(1-M_)x]1}/2 + (M) [(1+M)at - x]}1/2
' v g = cl 1 /2
M 211/2
MI1 Mg IR [(1+M){(M+Mg)at - x}]
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Table 5 (Cont'd)

AIRLOAD EQUATIONS FOR CASE 2 (M < 1, 0 < Mg < 1)

Region 3
4 c-;
A (x,t) =
cp3 ’ ) -Mz ;
= o~ _ C=X(t) -
x(x,t) c ch:rt-) (c-x)
x(t) = ——,"'
1+A
l-Mz Acpl 2(xv,t)
A= L
[
1 at 2
)" T = ¢ T (Lo
Ac
P1,2 2 t 2
Ac < at <
pz' +M) (1+Mg c — (1-M) (1l+M
x, = at (M=1) + 2c/1l+M
Regiond
4 c=-X
Ac_ (x) =
Py /T2 X
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l ; Table ¢ :
. b
b AIRLOAD EQUATIONS FOR CASE 3 (M < 1, =1 < Mg < =M)
| ,
|
| Line Equation ‘
-
: I x =0 '
E
] II X = C {
III X =c + (M+Mg)at %
!
' Iv X = ¢ + (M=1l)at
| \'4 X = g;% c + (M+l)at
VI t = - S
: (M—+Mg'5a ]
4 4
3
f 3
Region 1
F L -1 (1+Mg) (c-x) 1/2 }
A Ac_ (x,t) = - cosh {
31 ™ [1-Mg?] /2 (1-M) [ (M+Mg) at+cmx]
1
Region 2 ‘
am = (14M_) (c-x) 12
- dc. (x,t) = - g cosh 1l - g b
1 P2 T™(1-M 2] 1/2 (1=M) [ (M+Mg) at+c-x] :
]
|
Region 3 ;
4M o [ dae + ¢ 172 ‘
Ac_ (x,t) = - d 7 cosh g
Pa mM[1-M_2]}/2 (M4M ) at+C-x
: g g
5
]

At ds o tot A A a5
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Table 6 (Cont'd)

AIRLOAD EQUATIONS FOR CASE 3 (M <1, -1 < Mg < =M)

Region 4

’ = A x't)
Acp4(x t) cpz(

Region 5
1/2
Ac_ (x,t) = 4 [—ﬂ— ¢ (t)
Ps ' (1-M%)x
where
1+
d(t) =
2 + T
at 1l
Tt m'n;




Table 7

AIRLOAD EQUATIONS FOR CASE 4 (M < i, Mg < =1)

e Cr——— - e - - ~ NEnah o T—— T o O
S — e T = <~ — o E S b
3 4

Line Eguation
I x =0
IT X = C
III X = C 4 (M+Mg)at
v Xx = ¢ + (M=-1l)at
o M+l
v X T c + (M+l)at
g
M242 (M+M_) -1
VI X = g c + (M-l)at
(M+Mg)(M+1)
M+1
VII X = T c + (M+l)at
(M_~-1) (1-M)
1 g | ©
VIII t = + -
' {ITM 2 (4 M) (1+t) ) 2
-M M _+M +M a
Region 1 9
4|Mg|
Ac_ (t) =
Py MM 2 -1]1/2
g
gggion 2

172

Acp (x,t) = Acp (x,t)%l - % tan

2 1 (Mq+l) (c-x)

-1 (Mg+M)(x-at(M-l)-c)J |
$
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Table 7 (Cont'd)

AIRLOAD EQUATIONS FOR CASE 4 (M < 1, M_ < -1)

g

Region 3
1,2
2 -1 - (M+M_) [at (1+M) =x] + c(M+l)
Acp (x,t) = Acp (x,t){l - = tan J
3 1 (M_ - 1)x
g9
(M_-1) 172
3 %M (?+M) [ [("“'Mq) ae 1481 ] % C(M*l)]} }
g
Region 4
Acp4(x,t, - Acpz(x,t) + Acp3(x,t) - Acpl(x,t)
Regiun 5
1/2
c - X
bop (KiE) = (2] et
where
1/2 !
o) e, byt [ 2] |
p4 I c - |
xVI i
I
2 (M-1 |
= + =
Xy1 c )at !
|

i
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Table 7 (Cont'd)

AIRLOAD EQUATIONS FOR CASE4 (M < 1, M

g < =1)

Region 6

1/2
- [eox
bep ket = [SE]T e

where

Y(t) = Acp4(xVII,t)

M
xVII = (M+l)at - - c

Region 7
k(x)a

Acp (x,t) = Acps(x,tVIII) e (t-tVIII)

7

(M -1)(1-M)

tyrrr = ,1— mgmnw‘ %

k(x)

Acpa(x) - Acp6(x,tVIII)

Region 8 ( 1 1/2
c=X

Pg L(l-Mz)xJ
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Table 8

AIRLOAD EQUATIONS FOR CASES (M > 1, Mg > 1)

Ac
31

Region 2

Ac Xx,t) =
p2( )

Line Eguation
I x=0
II X = C
III X = (M+Mg)at
Iv x = (M+l)at
\ x = (M=l)at
) 4Mgﬁ

2 _q111/2
M[Mq 1)

M cos
™ (MZ _1) 1/2 X

4 . Mx-at(M’-l)]

M at(M_M+1l) - M x
+ ___97_ cos™t [ J g ]
(qu-l)l ? |at(Mg+M)-x|
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Table 9

AIRLOAD EQUATIONS FOR CASE6 (M > 1, 0 < M_< 1)

i

g
Line Equation
I x =0
IX X = C
TIII X = (M+Mq)at
v x = (M+l)at
v x = (M=1l)at
Region 1
4 M -1 Mx-at(Mz-l)]
Ac_ (x,t) = cos
Py ™ (M2-1)1/2 | x
M _q [at(M M+1) - M_x
+ +— cosh™t J d
(1-M§) 1/2 I(Mg+M)at-x|
Region 2
9
A . t = A It
cpz(x ) cpl(x )
Region 3
4Mg
de. (x,t) =
P3 M(l-Mz) 1/2
g
3
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Table 10

AIRLOAD EQUATIONS FOR CASE 7 (M > 1, M_ < =M)

g
Line Equation
I x =0
II X = C
II1I X =c + (M+M9)at
M+l
v X = c + (M+l)at
M+M
g
v x =l o, (M=1)at
M+M
g9
Region 1
' 4Mq_
Ac_ (t) ==
P1 M(M_2-1)1/2
g
Region 2
(M+M_) [Mx-at (M2-1)]-(M2-1)c
Ac_ (x,t) = 3 { Ny cos™ ! [ J ]
P> ™ (M2-1) /2 (M+Mg) x

) M cog-] [(M-!-Mg){(l+MMg)at-ng}+(l+MMg)c ])
M2 -1)'/? f

- 1
g (M+Mg){c x+(M+Mg)at,
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1 A& (24)
- % + %E » leading edge intercepted first

= (25)
SEE + %E » trailing edge intercepted first

The dynamic pressure q = %pwvi and ambient pressure p_

used to calculate the local pressure on the airfoil are based on the
preblast values of p_, o, and Vr until Acp becomes nonzero. After
that time, the blast values of p_, p_ and Vr at tlie leading edge of

the airfoil are used.
(1) Subsonic Flight Speed (M < 1)

(a) Case l: M > 1
g

The equations for Acp in Case 1 were derived by Smiley
and Krasnoff (ref. 19). The shock wave first intercepts the wing at
leading edge and sweeps over the airfoil at a speed greater than sound
as shown in figure 12. Region 1 lies between the shock wave III and
the rearward emanating wave IV. These waves, in turn, reflect waves V

and VI when they reach the trailing edge, forming Regions 2, 3, and 4.

Extensive calculations are required to determine Acp
in Region 5, yet the distribution of Aco is rather simple in form,
blending from the value at raflected wave VI to the zero value at the
trailing edge. The loading in this region is relatively uniiportant,
so the steady-state distribution for Acp is obtained by scaling to
match Acp at reflected wave VI, When reflected wave VI reaches the
leading edge, 'a steady-state pressure distribution exists over the

entire airfoil.
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(b} Case 2: 0 <M <1
B

The solution for Acp for Case 2 was derived by Ruetenik
(ref. 14) for Regions 1 and 2. No solution has been obtained for
Region 3 due to the complexity of the interaction between the singular
distributions of loading in Regions 1 and 2 with the wake. The distri-
bution of Acp for Region 3 is obtained by using the steady-state dis-
tribution for Acp and matching with Acp at reflected wvave V. The match-
ing is accomplished by a linear stretching of the coordinates, based
on distance from the trailing edge, to match the loading with the

loading along wave V. The specific equations used are

be, (x,) = — feX (26)
fi-H; x

- Tt {( ] -

x ¢ - x, (6) (c - x) (27)

with x(t) defined by

4 [+ : x(t) - Acp (Xv.t) (28)
\/1-142 v x(t) 12

where Ac (xv,t) is the value of 4c_ along wave V for Region 1 or 2,
pl‘z p
as appropriate, and xv(t) is the chordwise position of wave V. The

steady-state distribution of Acp is reached when wave V intercepts the
leading edge of the airfoil. This concurs with the time required to
reach steady-state as indicated by equation (59), reference 2l. The

.y

steady-state distribution for Acp applies after wave V intercepts the

leading edge.
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(c) Case 3: -1 <M < =M
-1

In .ase 3, the shock arrives from the traiiing edge,
traveling forward faster than rhe airfoil Mach number but slower than

the speed of sound. The wave diagram is shown in figure l4.

The equations for Acp for Regions 1, 2 and ] were derived
using the transformation from the two-dimensional supersonic steady-
state wing to the transient one-dimensional airfoil along with the
equations for the loading given in Section Al3, reference 1ll. The load-
ing in Region 4 is nearly the same as in Region 2, except for a slight
perturbation from Region 3. Because the loading in Region 2 is small,

the Acp value for Region &4 is obtained using the equation for Region 2.

The steady-state loading distribution is used for Region 5,
scaling the distribution asymptotically, following equation (18),
reference 21. All values of Acp in Region 5 are scaled by the factor
(1),

¢ = 1 - T s (29)
at 1
< +M + Mg (30)

The time factor ¥(r) varies from 0.5 when the blast shock reaches the

leading edge, to a maximum of 1.0.

(d) Case 4: M < -1
2

In this situation, the blast shock overtakes the airfoil
from the rear at a speed greater than the speed of sound. The equation
for Acp for Regions 1 through 4 are taken from Smiley and Krasnoff

(ref. 19). 1In Regions 5 and 6, the equation for the steady-state dis-

tribution of ;c? is matched to Region 4.

T




(2) Supersonic Flight Speed (M > 1)

The equations for all regions in Cases 5, 6, and 7 were

obtained from table 3 of reference 20.

3.2 LOADING ON FUSELAGE SURFACES: PREBLAST AND BLAST ENCOUNTER

Since the fuselage shape is not known a priori, it is difficult

to set up a practical, yet rational, procedure for computing the time
variation of the pressure at an arbitrary point on the actual fuselage.
The devised procedure is an attempt to estimate the pressures, admit-
ting the fact that much of it is based on intuition and involves many
simplifications (which have been adopted in related situations, e.g.,
gsee Norris and Hansen, reference 22) which may not be fully justifiable
for certain configurations.

If wind tunnel data were available for the particular fuselage,
such data could be used. These data would have to include pressure
coefficients at a sufficient number of points on the fuselage for a
range of Mach numbers and Reynolds numbers. 1lhe would also have to
cover a wide range of angles of attack and angles of yaw, and combina-
tions thereof. Unfortunately, such extensive data are never obtained
for actual configurations. In addition, the variety of configurations

encountered prevents the use of one set of data for all configurations.

Other theoretical means are availible. Methods have been devised
to determine pressures on bodies at sups.nic and supersonic speeds
for certain types of bodies. Methods for subsonic and supersonic
cylindrical bodies (e.g., refs. 23-26) are not only limited but also
extremely laborious. They are rejected here on practical grounds
recognizing, in addition, that other aspects of the problem can only
be treated in very approximate fashion. The Munk-Jones slender-body

theory or the linearized supersonic theory for pointed bodies of revo-

lution will be of some help. The Munk-Jones theory gives running loads
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per unit body length, independent of Mach number, and cousiders only
those additional pressures due to angle of attack. It has certain

complications if the cross section is not circular. Both of the slender-

body theories (Munk-Jones and linearized supersonic theory for pointed
bodies of revolution) are Mach number independent for the pressures

induced by angle of attack. The pressures at zero angles of attack can

be obtained for the supersonic case; however, they are Mach number

dependent, and cannot be easily introduced.

The point is that neither sufficient data nor well-established
practical methods exist to perform even the steady-state calculations
of pressures called for in the present problem for the preblast and
post-diffractive phases of the pressure-time histories. The rough
approximations which are described below appear to offer the best

solution.

Consider the two bodies in figure 19, where the actual fuselage,
(a), and an equivalent body of revolution, (b), have the same cross-
sectional area distributions along their lengths. For purposes of
equating the pressures on the two bodies, points on the two bodies may

be related according to either of the two following schemes

ol
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This implies that the points which have the same slope of the contour
in the plane section B-B are related.

Scheme (b) was chosen, since it results in the proper inclination
to the relative flow. Selection of the point (ii, ?L, ?L) where the
pressure versus time is desired permits unique determination of the
related point (xb. Yp? zb) on the equivalent body where the pressures
will be obtained.

The replacement of the actual body by a body of revolution repre-
sents a very substantial simplification. If the direction of the blast
is arbitrary, the blast will produce an incremental angle of yaw (GW)
in addition to an incremental angle of attack. However, these two can
be combined with the initial angle of attack (ao) in the preblast pitch
plane (zb - xb) to form a single angle of attack in a plane different
from the pitch or yaw plane.

Consider the equivalent body and the cross section for a point

(x 2b) where the pressure is desired, as shown in figure 20.

2b’ Y2pe 2
Note that the body-coordinate system is left-handed with the origin

at any point on the xb-axis of the body.

The objective is to find the pressure at point (be, Yop? sz)
before and after the blast encounter. The pressure-time history will
be assumed to vary in the fashion shown in figure 21, This is similar
to the pressure~time history presented by Norris and Hansen (ref. 22)

for stationary cylinders encountering blasts.

The pressure variation spans the following three time ranges of

interest:

(a) Period prior to blast arrival, t Lty where . denotes

the time of shock arrival at (be. Yop? ZZb)

(b) The diffraction period, t8 <t < cd’ where td-tc+ta

denotes the time when the flow returns to essentially
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"steady-state'' conditions following blast encounter and
tc is the clearing time. An abrupt increase in pressure

-
may occur at time t‘ (or t‘ +e,¢e+0).

(c) The post-diffraction phase or the drag phase, t > €y

Range (a) is truly a steady-state period. Range (c) can be

treated as steady-state based on instantaneous free-stream conditions

‘ dictated by blast conditions at the point in question. To construct
1 pressure versus time plots like that of figure 21, the following prob-
lems need to be resolved:

1. Determination of the steady-state pressure at the point

of interest based on preblast conditions.

2. The shock arrival time, ca. for the point of interest.

3. The length of the diffractive period tc.

4, The pressure at time t:, p(t:).

5. The pressure at time td’ p(td). based on instantaneous

"gust" and "free-stream" conditions at ty

6. Pressures during the diffractive period, assuming linear

variation with time between pressures p(t:) and p(cd).

7. Pressures at selected times t > tys p(t), based on

instantaneous ''gust” and "free-stream”" conditions at t.

Each of these will now be discussed individually. First, however,
some preparatory work is needed. Divide the body into three parts,
as shown in figure 22. The definitions are arbitrarily made so that

x, 1s the station at which (dR/dxb) = -0.15 and x8 is the station at

d
which (dR/dxb) = 0,15, where R is the radius. Pressures on Part (c)

are not expected to be large, especially for large forward speeds,
L Vo; therefore, Part (c) can be treated in a very approximate fashion as
a portion of Part (b) with (dR/dxb) > 0.

sdec o o aiuc i
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The steady-state pressure coefficient (Cp), due to angle of attack
for the quasi-cylindrical section, is a function of position (xb and
8) and angle of attack (a)* according to slender-body theory.

dR
aucosza %5— cos® + a(A) ainza ax. 80
% b
cp (x,,8,0) = (31)
a(a) sinza gib >0
=18 a>0
A = (32)
]6' a <0
1-4sin%a 0 <Ac<m/2
a(A)=¢ -10.278 + 4.6333A /2 < A < 2n/3 . (33)
-0.574 2n/3 <A< m

The term 4a coszu(dR/dxb) cos® comes from slender-body theory (see
Liepmann and Roshko, reference 25, page 245, with az omitted and

a cosza added to reduce the total dynamic pressure to dynamic pressure
based on axial velocity. The added cosza factor also reduces the

)
(dR/dxb) contribution for large angles of attack. The a(A) sin“a

*
The angle of attack is defined as the angle between the negative of
the relative wind and the body axis X,

e e e i L

eac g ool o
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supercritical Reynolds number flow.

term gives the cross-flow drag in accordance with Allen and Perkins
(reference 26). The constants in the formulas for the circumferential
pressure variation, a(A), are chosen so that the circumferential pres-
sure variations result in a value of 0.35 for the sectional coefficient,
Cd, a reasonable value for supercritical Reynolds numbers. The circum~
ferential pressure variation, shown in figure 23, matches a typical

f pressure variation along the periphery of a cylinder engulfed in a

Equations (31) describe the steady-state pressure coefficient for
the quasi-cylindrical and tail sections of the body, but are not appro-
priate for the blunt nose section. The nose section pressures will be
approximated by using the pressure coefficient at X=X which will be
taken as the stagnation point. This pressure coefficient is a function

of Mach number, M, only, and will be denoted by Cp

(o]

a5y’ M <1
0.74 -
C M) = (34)
po
2 7/2 5/2
) (@) » =
M -1

o.M

of determining the preblast pressure.
tail sectioms, Cp (t < ta) is given by
blast angle of attack.

o]

64~

Consider now the seven problems listed earlier. The first is that

For the quasi-cylindrical and

equation (31), using the pre-

The determination of the pressure coefficient for the nose section
is more complicated. At the nose point, which is the stagnation point

for a = 0, Cp is applicable exactly at 1 = 0, and approximately if a

e
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is finite. The pressure coefficient for a quas‘-cylindrical section,
Cp(xd,e,a), is defined by equation (31) where 6 is the same as that
for point (xb, Yy zb).

By definition, (Q&_) = -0.15. Let
%, /%4
§ = t;an-l (—g—R ) (35)
“+/%
sy = = (‘:be)x = tan~1(0.15) (36)
d

The transition from the stagnation point pressure coefficient to the

pressure coefficient at Xy for t < ta can be represented by

sindé - sindd 2
Cp(xb>xd’e’a) » [Cpo - Cp\xd,e,a)] __T:EEEEE--

(37
+ Cp(xd,e,a)

The form of equation (37) is patterned after the pressure distribution
given by Newtonian flow, that is, proportional to sinzé. The variation
in pressure coefficient given by equation (37) roughly approximates this
distribution because Cp is substantially larger than Cp,and sindd is
o
small in comparison with unity.
The pressure coefficients defined above are used to obtain the

pressure in accordance with the equation

P=p,* q,,Cp (38)
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where p_ and q_ ¢ - the free-stream pressure and dynamic ;ressure.
Equation (38) is appropriate for transforming the pressure coefficient
into pressure tor both preblast and blast conditions, provided

that p_ and q_ describe the local ambient conditions in front of or at
some point behind the shock, as appropriate. One note of cautiom is

required in applying equation (38): The pressure calculated by eguation

SaCR g g Y

(38) may be negative, which is, of course, a physical impossibility.

If this happens, the pressure should be set equal %o zero.

Next, the determination of the time of shock arrival, ta' and 3

the clearing time, tc. must be considered. The blast characteristics

i M

routine used in the NOVA program returns the shock position for a given

time. It is a simple matter, then to proceed in small timewise steps,

calculating the position of the desired pcint on the body relative to 4
the burst point at each step, and comparing this with the shock position q

at the time associated with that step. In this way, the time of arri-

val, ta’ can be identified as closely as desired.

Similarly, the time at which the sho~k first touches the fuselage
can be identified. The time at which the fuselage is intercepted ti. is
needed to define the clearing time, tc. Dete-mination of ti is some-
what more cumbersome than the determination of ta’ because a number
of points on the fuselage must be considered to identify the time at
which the shock first intercepts the fuselage. Basically, however, T,

is determined in the same way as Y

The clearing time t. is an artificial parameter wnich has been devised
to present the actual pressure versus time in the approximate fashion
of figure 21. It may be thought of as a rough measure of the time
required for the flow to return to essentially quasi-steady conditio--~
following shock arrival. Attempts to define tc experimentally are

rather limited and are confined primarily to tests on stationary cyrlinders

oy

v2.8., reference 27).

Lot bk

o




There is some degree of arbitrariness in defining t. because (a) the
diffractive pressure variations are not generally linear, and (b, the
start of the quasi-steady period mav be very difficul: tc determine.

Both of these poiats are strongiv intfluenced by the locatica of the
point, the shape of the body, and the shock orientation and strength.
in what follows, then, an attempt is aade to give a defirnition of :c
which will result in reasonable representations of -he diffractive
phase pressures. There is obviousiv no siagle approach which ccula

handle accurately all possi™’. :ases that z=ayv arise.

To begin with, ccroiuer tae ~ase of a wedge flving supersonically
prior to a head-on blar = en_.vuntar. CZuriag the tlast -raversal, the
shock pattern has been ioted %0 2e such :tnat 3 region behind :ne shock

of approximatelv abs(t-: ) in width (abs = speed of sound behind the

{

blast shock) is still in a diffractive pnase (re:. 29). Figure 2.
illustrates :zhis point. Thus, one =av cunsider ior the above situation
that a ""diffraction wave' starts traveling bSack {rom the shock wave

at "ime :i' This wave travels at the speed of souna, abs' reilative o
the shock. At some time = > ¢ , then, the diffracticn wvave is at a
distance als(t-:i) behind zhe shock. S:ince %he position of the diffrac-
cion wave can be referenced to the posizicn of the shock fronz, t
procedure described above can be used o determine the "ime at whicn

the diffraction wave reaches the desired point, t,. The clearing tize,

(A N %%

, and

tc. is then simplv the diiference between ¢ ¥

XN

£ this analvtical Zefinizion Icr = is adopted for bodies Ilving

C
at different speeds, and eacountering blasts from arbitrarv ocrienta-
tions, some problems 2rise. First consider the case of a cvlinder
which is intercepted side-on bv a shock wave. The above definition cf
tc results in a clearing time of zero Zor the extreme windward points,
since ti and ta are identical for such points, and therefore, the

diffraction wave also arrives at ta (td = :a). Tests on scaled missile

models in the DASACON shock tube (ref. .7) however, indicate that a
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clearing time of about (ZR/abs) is appropriate, particula;'y for points
on the windward side which experience the highest pressures. Accord-
ingly, the adopted procedure is to determine tc as described earlier,

and to use the larger of that value or (2R/abs).

The second problem which arises may be illustrated by the case
when the blast arrives directly from the back and the vehicle velocity
nears the value Vs - Ay where VS is the velocity of the shock front.
‘or such cases, the clearing time (tc), as defined above, becomes
unrealistically high. No experimental results are available to establish
an upper limit on tc in a manner such as that used to establish the
lower limit. The value of (6R/abs) has arbitrarily been chosen as the

upper limit of tc in the program.

To determine the pressure at time t:, it is necessary to define
the orientation of the shock front relative to the fuselage local sur-
face normal. When ta i{s determined, as described previously, the shock
orientation in 3pace is automatically available. The unit vector
normal to the shock, in the direction of shock propagation, will be
designated by ;s' The unit vector normal to the bodvy and directed

inward is given by

= - dR 2
T e T

sine - ib cost) Cm D — (39)

drR |-

vl

where ib, Eb' and Eb are the unit vectors in the xb. Vi and zb direc-

tions, respectively. Defining a new coordinate system, x, v, z, which
{s related to the xb, v., 2, svstem by a rotation -x about the ¥

‘b b - 0 b
axis, so that the x axis i{s horizontal,

=-70-




- dR - .
n i < cosa + cosesinao) - 3 sin 2

dxb

+ k (%R__ sina - cocecosa ) SR — (40)

[T 4R\ -
v ()

where 1, 5. and k are the unit vectors in the x, y, and 2z directions,

respectively.

If the components of 55 (the unit vector normal to the shock in
the direction of shock-front propagation) in the x, v, z directions are
n,n, nz. respectively, then the shock pliane and zhe plane :angent

X y
to the fuselage body make an angle

= c:os;-l ‘ S, n (95— cosa + cos=sina )
f > de:.D o o)

dR * .
v &

, dR . .
-n sinv + n (= sina -cosccosa ) 3
v z d o o] - "sb —

(41)

If the vehicle has no component of its velocity Vo normal to the surface,
then the theory of plane shock reflection from a stationarv plane sur-
face can be used. This would be nearly true for regions where dR/dx.D

is small, i.e., in quasi-cylindrical portions. For high |dR/dxb‘
regions, i.e., the nose section, this would not be strictly applicable.
In fact, with "blunt' bodies in supersonic flow, there is a shock-shock

interaction problem which is not easily included.

-71-
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In the absence of a better practical procedure for such regions,
the reflection theory of a plane shock on a plane stationary wvall will
be used. Norris and Hansen (ref. 22) give Ap/Aps as a function of
esb' where ip is the incremental pressure on the body and Aps is the
is dependent on the pressure
b exhibit bumps

in the neighborhood of transition from a regular reflection to a Mach

shock overpressure. Ap/Aps versus esb

ratio across the shock. The curves of Ap[dps versus 93

reflection. These bumps have not been observed experimentally on circular
cvlinders. Dather than use the curves i{n Norris and Hansen directly, the
approximation depicted in figure 15 is used. The curve shows constant
“piip, for 0 - NS ENAT and linear variations of ;p/Lps with 9sb between
/- and */2, and between -/l and -.

In figure 25, the parameter ;p is the reflection factor for normal

incidence, ard is given by

R e e (42)

L)
5 0 < A /4
\ - k.-q/',‘ -
2P . . L , ’
P, o + (1 rp) 7% 2 < ep ST/ (43)
3
sb i
A 2 b

g
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p(el) = p(e]) + AP.) s, (46)
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vhere p(t;) is the pressure just before shock arrival, or the original

steady-state pressure f‘rom equations (31) through (38).

Next, consider the pressure at the end of the diffraction period,
p(td). From the blast routines and the range and orientation of the

point in question relative to the hurst point, the ambient density,

-_(td). pressure, p,(td). and material velocity components, v‘(td).
'v(td)' and vz(td). are known. The x, y, z coordinate system is that
described in connection with equation (40). The total velocity is,
then,

/ 2 5 S
Veley) -'[Vo - v’(fd,‘l + (vy(td)} + [vz(td)] (45)

To find the angle of attack of the section containing the point in

question, the total velocity of the air relative to the body is resolved

into components in the xb. yb. zb. body coordinate system.
} *

V,r - (Xo wx) cosao + wz stnao (46)
X,

Vo = wy (47) :
"y

VTz = (Vo - wx) sinao + W, cosa (48)
b

The flow is then inclined at an angle y from the 2, axis, where

-74=
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(49)

An effective 9 may be defined as the angle between the flow and the

point in quescion. Calling this angle &,

S 7]
"m
* 9
]
e d

(50)

To maintain % in the interval == - 7, {f 3 > v, subtract 2+, and if

3. -v, add 2v. Finally, the angle of attack is given by

M siny + V cosy
'S

Tz
b

1= tan T2 s 3 < n/d (31)

-VT

b

Equations (31) chrough (38) are used with 3 replacing 2 to find
p(td). Note that, if a nose point is involved, there is an implici:

assumption that VT v 0. Also, for a nose point, the flow parameters

*

to be emploved fnr the stagnation point, including the Mach number in
equaticn (31), and for xb A ara those corresponding to the point

in question.

Pressures during the diffraction period are found by linear inter-

polation.

t-t

p(e) = p(t]) + e =t} gty ()

t
c
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For times greater than tyr the pressure at a point is found in
preclsely the same way as p(td); that is, equations (45) through (51)
are used, with t > ¢

replacing t,, and the parameters so defined are

d d
used vith equations (31) cthrough (38) to obtain the pressure.

The foregoing procedures serve to define completely the pressure-
time history for a point on a fuselage with a straight centerline, due
to a single shock. Modifications necessary to accommodate a nonstraight

centerline and a double shock will now be described.

The computer program permits the centerline of the fuselage to be
described by two straight lines, as shown in figure 26. The bend
occurs at xb - ‘BF' which is assumed to be aft of the transition point
4 All of

the preceding procedures remain valid, as long as the initial angle of

from the nose section to the quasi-cvlindrical section, x

attack is defined by

‘o xb ? xHF

-
1o . X, *BF

If the aircraft is intercepted by the blast wave at a point just
above the triple point, a second shock will follow closely behind the
first. The pressure-time history for this case is shown in figvre 27,
Subscripts 1 and 2 are used to identify the first and second shocks,

respectively. Prior to the time ta , the pressure is, of course, given
el

by the procedures already described. The jump in pressure at time ta

2
is (Ap/Aps ) Aps . The shock overpressure Aps , for the second shock
2 2 2
is obtained from the blast routine and (Ap/Aps ) is obtained from
2

e e



Figure 26. Geometry of Fuselage with Bent Centerline
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equations (42) and (43) using the ambient pressure corresponding to time

ta for p_. The pressures at td and later are given by procedures
2 2
already described, using flow parameters from the blast routine for the

doubly shocked air. The only remaining point requiring definition is

p(t, ) for ¢t <t .
d1 az d1

d a
p(e,) = py (e, ) + (el ) - pe] ) - =2 |l
1 1 2 2 d, ~ ‘a, 2
-p(t_)) - (p(t, ) -p(t, N] . <t (54)
P a, P d, P d, ] a,  d;

The quant .ty pl(cd ) in equation (54) is the pressure that would exist

1
at time tq in the absence of the second shock and pl(td ) 1s to be
1 2
interpreted similarly. Linear variations in pressure are assumed from
t to t, and fromt tot, .
o I LR
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SECTION IV
STRUCTURAL RESPONSE TECHNIQUES

The structural elements of an aircraft vehicle susceptible to

overpressure damage consist of the following:

1z Stringers on the fuselage or on lifting surfaces

2 Longerons or frames on the fuselage

3. Single-layered or honeycomb panels on the fuselage or on
lifting surfaces

4. Acrylic, glass, or plexiglass canopies 3

5. Multilaycred radomes

6. Rib webs on 1lifting surfaces

Two structural response codes were developed for predicting the
elastic and inelastic response of these structural elements to the
overpressure loading associated with the blast wave. The first of these
; response codes is called NDEPROB for Dynamic Elastic Plastic Response of
4 Beams and was developed for use with stringers, longerons, frames, ribs, A
and also for conical or cvlindrical shaped radomes which may be repre-
sented bv a ring. The second of these response codes is called DEPROP
f for Dynamic Elastic Plastic Response of Panels and was developed for use

with single-layered and honeycomb panels, canopies, and certain radomes.

Provision is made in each code to determine the static preblast

solution due to internal pressurizaticn and serodynamic loads on the

P

structural element. This steady-state solution then provides the
initial conditions for the dynamic response associated with a time-

dependent blast wave. The formulation for each of the two response

b codes is described in detail in the remainder of this section.

e
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4.1 DYNAMIC ELASTIC-PLASTIC RESPONSE OF BEAMS - DEPROB

The structural response program DEPROB calculates the static and
dynamic, elastic or elastic-plastic, response of aircraft elements which
can be modeled as beam or ring elements. These elements can have
arbitrary spanwise shape, can have arbitrary cross section involving
different materials and varying spanwise along the beam, can have any
combination of boundary conditions -- clamped, simply supported, or free--
and can rébpond to a transient pressure function which varies with both

time and spanwise position.

The basis for the code 1s a finite-difference method developed by
MIT (refs. 29 and 30) to predict the deformations of a circular ring to
impulsive and transient loadings. DEPROB represents considerable modi-
fication and extension of the capabilities of that original effort. The
remainder of this section will describe in detail the DEPROB code. As
partial verification, the {inal portion presents comparisons of the
dynamic response of two clamped beams tested experimentally and analyzed
by DEPROB and by the MIT code.

4,1.1 Basic Theory

The finite difference technique applied to two-dimensional
structures in DEPROB assumes a 3spanwise model consisting of a series of
discrete masses interconnected by straight, weightless bars, as indi-
cated in figure 28. Beams with variable geometrical cross section in
the spanwise direction are reduced to a series of links, each completely
uniform. Each bar and mass then has its own material properties. Beam

response to externally applied forces is computed at each mass point.

The actual cross section is idealized by introducing a set of
discrete points called flanges. These flanges have normal stress
distributions, and are interconnected by material of infinite shear

rigidity as indicated in figure 29. Flange elongations are governed by

the Bernoulli assumption that plane sections remain plane.

i
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The stress-strain curve of each layer of material is modeled |

]
by a series of straight lines, as shown in figure 30. Enough straight g

line segments will, in the limit, describe any curve. The curves may E
diff=r in tension or compreseion, except for the elastic slopes (segment 1),

which must be the same. However, the yield stress, defined as the break i
point strees at the end of the first segrent, may differ in temnsion and

compression.

A more cumplete description of the theoretical development of
DEPROB is now presented in subsections 4.1.2 to 4.1.11. &

T RN

4.1.2 Equations of Motion

-
e A

The governing equations of dynamic equilibrium take the form

3 )

38 (N cos 8) =~ 5 (Q sin 8) + Fy -o¥ =0
2 (Nsin8) += (Qcos ) +F_ -mt = 0
9s s ’ z

and, ignoring rotary inertia,

aM
¥s Q 0
Referring to figure 28, the corresponding finite difference equations

are, for the ith mass point, 3

M ©080 1 L -1 $056 50

sinei+l + Qisine

i+l i

(55)

o
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Nyyy8ind,,,)-N,8ind, +Q c080,

As, + As
i i+l
-Q cos + in ( 5 )-

miwi =0 (56)
My - M, ) - Q as, = 0 (57)
where, from geometrical considerations,
bs = [(v, - Vi-1)2 + - wi_l)zl L (58)
sing, = wiA; wi:i (59)
i
cosf, = Zi_igzlll (60)

The fundamental variables entering into the above equations of motion

are defined as follows:

N = internal axial force

Q = internal shear force

M = internal moment

8 = angle between y-axis and bar
As = length of bar

o = discrete mass

v = position in the y direction
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W = position in the z direction

= external force per unit length in the y direction

F - external force per unit length in the z direction

[¢]

The double dot over the variables v and w represents double differentia-
tion with respect to time, i.e.,.v = dz(v)/dt. Since each mass point
must be in dynamic equilibrium at all times, equations (55-57) must
apply to all points, { = 1,N, where N is the total number of masses in
the model.

The numerical procedure for solving equations (55-57) is to
first find all Qi's from equation (57), then find Vi and 01 from equa-

tions (55) and (56), respectively. Determination of Ni’ Mi’ Fy .
i
Fz and m, will be explained in Subsections 4.1.3 to 4.1.8, and the
i
temporal integration technique used to extrapolate quantities to the

next time step 1is described in Subsection 4.1.10.

4.1.3 Variable Cross Section

For beams of variable cross sections where the width and
thickness of any of the layers varies spanwise along the beam, a set of
cross sections is developed where each corresponds to a particular bar
in the bar-mass model (fig. 28). The width and thickness is initially
specified at each mass point and each end of the beam. From that
information uniform cross sections (width and thickness remaining
constant) are generated. These uniform segments extend from one mass
point to the next and the idealized dimensions of each are found by

averaging the dimensions at either end.

Variations are assumed to be small so that laterally applied
external pressure loads are assumed to act normal to the beam as located
by the mass points. 1In other words, the local variations in surface

orientations are neglected in determining the direction of the load

vector.
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4.1.4 Idealized Model of the Cross Section

The creation of an idealized model of the actual cross section
requires first reducing the cross section to a set of uniform, rec-
tangular layers, as shown in figure 29. Each layer, however, can have
different physical properties as well as different geometric properties.
The second step in modeling the cross section is to represent each layer
by a set of one or more flanges in order to repreéent the extensional
and bending stifriness in the layer. The more flanges used, the more
accurate the representation, but at the expense of additional computer
time. Hence, the number of flanges and the spacing within each layer

must be optimized.

It should be noted that for a beam with noouniform cross
section in the spanwise direction the cross section at the c2nter of the
beam is modeled for the desired number of flanges and flange spacing
and this flange representation is used for tte entire beam. To do
otherwise would be exceedingly complicated, resulting in little addi-
tional accuracy. This assumption does not significantly affect the

ability to analyze nonuniform cross sections.

The number of flanges allotted to each layer of material is
determined on the basis of bending of a composite beam. The number of
flanges in a layer is allotted approximately in proportion to the elastic
modulus, E, and the width, b, for the layer, the depth, h, of the layer.
Because the thickness plays a more important role in bending, the number

of flanges is actually determined by h(Eb)0'75. The allotment is not

exactly proportional to (h(Eb)O'/S) for each layer since this would
result in fractional numbers of flanges. Actually, in the computer
program, the number of flanges for each layer is obtained by selecting

an even number n (2, 4, 6,...) for the layer with the largest value of
0.75

(h (EB’ }, calculating a number y for each layer "k" from
0.75
h (Ekb )
k k
=0 g (61)
h(Eb) *
38-




and rounding n to the nearest even integer, or if less than 1.5, 0 is
rounded to 1. Even integers are preferable because the bending stiff-
ness of each layer of material can be represented more effectively with
a minimum number of flanges. The reasons for this selection are more
raadily apparent from the discussions which follow on the area and

1 spacing of the flanges.

The area and spacing of the flanges in each layer are evalu-

v ated from considerations of both the extensional and bending stiffnesses
of the cross section. It is desirable, if possible, to duplicate the
bending and axial extensional stiffness of the entire cross section
through all phases of stress; elastic, elastic plus plastic, and all
plastic. It is impossible to duplicate all possible elastic plus
plastic stress conditions without the use of an infinite number of
flanges in each layer of material. It is possible, however, to repro-
duce easily the normal force, N, and the moment, M, resulting from the

following strain conditions:

1. Any purely elastic strain
2. Purely plastic axi.l strain

3. Purely plastic bending strain

Satisfying the above strain conditions guarantees that any strain condi-

tion will be reasonably well reproduced.

For a multilayered beam, if the elastic extensiorial and elas-
tic bending stiffnesses of each layer of material of the cross section
3 are reproduced, all three of the strain conditions listed above are
correctly tireated. Figure 29 illustrates the actual cross section for a

multilayered beam and the idealized flange representation of the cross

section used in the computer program. In the idealized representation
the flanges in a layer are of .:qual area and are distributed symmetri-
cally about the centerline of the layer. The elastic extensional and

elastic bending stiffnesses are reproduced by the following area and

spacing of the flanges:

e Ameat s A

e
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A (62)

d = (63)

where
Ak = the area of each flange in layer "k"

b = width of layer "k"

k
dk = spacing between flanges in layer "k"
hk = the height of layer "k"

n, = the number of flanges in layer "k"
k = the kth layer

As pointed out earlier, this representation is based on an even number
of flanges for each layer of material. Actually, the uniform spacing
between flanges could be based on a symmetrical distribution of flanges
about the centerline of the layer, with one flange located on the
centerline. This representation is not desirable because the flange
located at the centerline is ineffective in reproducing the elastic and

purely plastic bending stiffness of the layer.

The one exception to the spacing formulas (63) 1is when only
one flange is assigned to the layer, in which case the flange is located

at the center of the layer and dk = 0.

The strain for pure bending is zero within some layer of the
cross section. Therefore, the correct representation of the purely
plastic bending condition is obtained by dividing the layer in which the
strain is zero into two equal layers. The dividing line is the zero
strain axis, and both layers have identical material properties. The
flange area and spacing are determined as before except that the ideal-

ized cross section contains L+l layers instead of the L layers of the
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actual cross section. This approach is very useful for a single-layer
cross section because the two layers are positioned symmetrically about
the centroidal axis. Representing the elastic bending stiffness of each
layer by flanges distributed symmetrically about the centerline of each
layer reproduces both the elastic bending and purely plastic bending

stiffnesses of the entire cross section.

The internal bending moment for the cross section is deter-
mined by using the reference axis in figure 29. The inertial forces are
also based upon accelerations at the reference axis; therefore, the

reference axis is located at the center of gravity of the cross section.

L
By
E(h1 ook ) e by

kw1
xcg T (64)
PIENAN
k=1
where
Xcg = the location of the centroidal axis (reference axis)
with respect to the base nf the cross section
e = the mass density of layer "k"
L = nuwber of layers in the cross section

and the other variables are as defined earlier. As indicated in figure
29, the distance from the center of gravity .o the rth flange located in
the kth liyer is depicted by cr, and rerresents the bending moment arm
for that flange. In the case of variable cross section, the parameters
Ak’ dk’ ¢ and Xcg will all depend on spanwise position, and henceforin
the subscript "i" will be attached to them to indicate that dependence.

-91-
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4.1.5 Strain-Displacement Relations e

Referring to figures 28 and 29 again, the finite difference

Y. oo

equations representing the strain-displacement relations for the rth

flange in the cross section at segment i are given by

: As, - As A8, - A6 A8 - A9

S i i,0 _ Cr 1 i,o + i-1 i-1,0 (65)
iN Asi i AS AS ks
’ 1,0 $i-1,0 7
1 ro. 1 Asy = Bs, . 88,4y - Asi+l,o ;
. 2
r v 2 L Sl L
3
3 (48, - 48, )
PO s r i i,0
5 @y *+ i) = (66)
As
i,o
where
As 2 l-(As + As ) (67
i,o 2 b I i+l,o0
3% = Bjw - %
= sin-l(sine cosf,-cosb sinB,) (68)
i+l i i+l i
and

€y = gtrain used to compute the internal force, N.
A .

€y = strain used to compute the internal moment, M.
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The change of angle at mass i, A6 is computed from the inverse sine

i’

formula since the sines and cosines are already available (eqs. (59-60)).

Likewise, As, 1is available from equation (58). The subscript "o" refers

i
to the unstrained conditions.

The two distinct formulas for computing e and €y arise from
discretization - the fact that the internal force is computed in the
ith bar; the moment is computed at the ith mass. Once the stresses, o,
are calculated based on the strains, the force and moment are the result

of the following summations over all the flanges:
r r
N, E"iu Al (69)
r A

1 r r r r r
My =g Z °1,, Ay + AL G+ o) (70)
r

The following section describes the stress-strain relationms.

4.1.6 Stress-Strain Relations

The stress-strain model, depicted in figures 30 and 31, con-
sists of a set of piece-wise linear segments defined at coordinates
((ek,ck), k = 1,2,...n). This uniaxial curve may be different in ten-
sion and compression, although the initial slope, cl/sl, is constrained

to be the same in the following mathematic model.

In order to incorporate strain hardening and elastic unload-
ing and reyielding, a "mechanical sublayer' model is adopted (ref. 31).
This model is based on kinematic hardening (in a unlaxial sense) which

takes the Bauschinger effect into account (see figure 32).
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(a) Elastic-Perfectly Plastic Cycle

3 (b) General Loading Cvcle
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Each flange in the program is conceptually broken down into
several subcomponents, or ''sublayers". Each of these sublayers behaves

in an elastic-perfectly plastic manner and each has the same modulus of

elasticity, E, but each has a distinct fictitious yield stress associa-
ted with 1it, Ek. The value of Ek is simply given by

5k - Eek (71)
Once the stress in each sublayer is found from its own elastic-
perfectly plastic model and the strain, €, the total stress can be
determined by summing over each sublayer after weighting the stress
in each sublayer by an appropriate weighting factor. This weighting
factor simply takes into account the fictitious yileld stresses used
in the model.

n
o = Z ¢y ck(e) (72)

k=1

where

Ber1 ™ B

- = (73)

and

[©]

k=1

“k%-1

ﬁ ®x k-1

e

k=2,3,...n (74)

0 k=n+1
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In the case of an elastic-perfectly plastic material, there is
only one sublayer. In general, each distinct slope of the stress-strain
model in the entire tension-compression regime will dictate a unique
sublayer, except for zero slope segments, which are automatically
accounted for. The method makes two assumptions: 1) the modulus of
elasticity is the same in both tension and compression, and 2) the break

point stresses increase for increasing strain.

For problems involving complex cyclical load paths where
points may unload, reyield, unload, etc., the method provides a very
convenient mechanism to follow this behavior as only elastic-perfectly
plastic curves are ultimately involved. it is also of note that the
computation of the weighting factors, ck's, need only be performed once
since they are independent of time.

4.1.7 Boundary Conditions

DEPROB has the ability to analyze any combination of clamped,
simply supported, and free edge conditions, including a symmetric
"edge', where ¢nly half of the beam or ring is analyzed when the beam
and its external loading are symmetric about the center. Each of the
edge conditions is discussed below and the appropriate equations

presented.

Clamped Edge

An ideal clamped edge condition is assumed, where zero
deflection and zero slope are assumed at the clamp, as indicated in
figure 33(a).

According to finite-difference techniques, the zero slope
constraint would best be approximated by including at least one mass
very near the edge, so that the zero slope constraint is maintained in a

very localized region. For large deflection problems dominated by
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membr'ane forces, however, a large stress concercration occurs near the
clamped edge and results in very large computational times due to the
additional masses but, more impourtantly, also due to the small time
increment thereby required in the solution. The time increment, At, as

will be seen in subsection 4.1.10, is proportional to the shortest link
in the model.

A new technique has been applied which eliminates these

problems, with computational time on the order of ordinary finite-~

difference calculations, yet permitting a much higher degree of accuracy.

This is accomplished by subdividing the segment (bar) nearest the edge
into 10 unevenly spaced subsegments, with the subsegments more closely
spaced near the edge. These subsegments are not used in the finite-
difference equations, however. Instead they are the basis of a static
solution, where, through an iterative process, the forces and the moment
at the end of the first segment are found at each instant of time by
satisfying the end deflections and an end slope condition. The use of a
static solution is equivaleqt to ignoring the mass of the first bar,

which is consistent with the discretization used throughout.

Figure 33(b) shows the relative advantage of this method
over the previous method indicated in figure 33(a). The new method
permits a more precise solution between the clamp and mass point 1, as

it is allowed to deform with the rest of the beam.

When the beam is initially modeled, however, the first
segment musf be oriented perpendicular to the assumed wall, as shown in
figure 34(a). It 1s appropriate that the length of that segmeut be on
the order of other segments in the beam. Either or both of the ends of

the beam can be clamped.
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Simply Supported Edge

A no-slip, knife edge (hinge) condition is imposed by
requiring no deflection and no moment at the edge. As shown in figure
4 34(b), it is appropriate to initially mcdel the beam with the segment
nearest the edge approximately the same length as other segments in the

beam. Either or both of the ends of the beam can be simply supported.

Free Edge

§ The free edge 1s characterized by zero moment and zero
internal force in the outer bar. As indicated in figure 34(c), that
3 outer segment should be roughly half that of other segments in the beam.

i Either or both of the ends can be free.

In the event that both ends are considered free, the

E structure can be analyzed if the center of gravity remains stationary
and no rotation is introduced. The net translation and rotation of the
beam are accounted for by calculating the accelerations responsible for
this motion and subtracting them from the left-hand sides of equations
(55) and (56). The rigid body accelerations 3 and 3 associated with

translation are calculated from

z =]
S M (75)
N
|
| 2"
= z i=] L .
T 5 (76)

e
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The rigid

where

body rotational acceleration is determined from
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ri = (vi -v)" + (wi - w)
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The coordinates v, w represent the coordinates of the center of gravity
of the system. Finally, the y and z components of acceleration due to

the angular acceleration are, respectively,

VRi - - (Ui - ;) (84)

;Ri- 8 (Vi = \-I) (85)

The total rigid body motion is formed by adding the contributions from
eq. (75), (76), (84) and (85).

1
8
g
;
3
y

Symmetric Ecge

When the beam and its loading are both symmecric about
the center of the beam, only the first half need be analyzed. The pro-
gram will automatically rotate the structure so that the plane of sym-
metry is parallel with the vertical (z) axis in fijure 34(d). A ficti-
tious mass (N+l) is constrained to move as a mirror image to mass N,

g thus enforcing zero slope and symuccric motion aboun the plane of
1 symmetry. As indicated, the segment necarest the plane of symmetry
should be only roughly half the length v other segments, because its

mirror image 1s an equal distance o2 the other siae.

Free Ring

As indicated in figure 34(e), the free ring must be
‘ modeled symmetrically, but 1s assumed to close on itself. The program
1 then rotates the structure so that the plane of symmetry is parallel to
the vertical (z) axis. As was the case with a free-free beam, rigid
] body rotation and translation are subtracted out of the solution, leav-

ing motion only relative to the time dependent c.g. of the system.
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4.1.8 Elastic Support at Discrete Po'nts

The flexibility of DEPROB, particularly the ability to apply
external loads to discrete mass points, lends itself to the analysis of
three special structural configurations of interest. They are 1) a
relatively weak frame situated between other relatively strong frames
and deriving support from the connecting longerons and stringers, 2) a
frame deriving support from outer skin when internally loaded (preblast)
and 3) stringers and longerons deriving support. from outer skin as in
(2). Each will be discussed below.

A weak frame may derive elastic support frum a longeron at the
point at which the two structures are joilned. The frames are assumed to
be evenly spaced such that the stiffness coefficient associated with the

longeron is given by

£ -192 E'T'

§ 13 (86)
2

where

E' = modulus of elasticity of longeron

I' = moment of inertia of longeron

L' = length of longeron between strong frames or
bulkheads

The frame, analyzed by DEPROB, will then receive a restoring force pro-
portional to the displacement § and applied to the frame at that point.
This technique obviously excludes dynamic coupling of the two eldments

but should be a reasonable approximation, particularly for the weak

frame situation.

When a frame element is subjected to 1 net outward preload
pressure due to internal pressurization of the fuselage, the outer skin

makes a very significant hoop stress contribution in resisting outward
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deformation that would not be properly accounted for when modeling the
skin as part of the frame cross section. In order to correct for this,
the tensile stress-strain curve is modified within the program to take
into account the larger effective skin area when the outer layer is in

tension.

For fuselage stringers and longerons under net outward preload
pressure, a different approach is taken to correct the same problem that
existed with the frame. In this case, a cylindrical section of aircraft
skin actually contributes to the hoop stress strength of the structure.
The restoring force at each point along the stringer can be shown to be

approximately proportional to the deflection of the element:

0 § <0
f = (87)
8,
-2E6 h sin — § § >0
s 2
where
= modulus of elasticity of skin
= thickness of skin
5 ¥ angular spacing between stringere around the fuselage

4.1.9 Preload Static Solution

The method chosen for solution of the preblast deformations
due to steady-state loads is an i.rative relaxation procedure designed
to reduce the accelerations to zero. Once this equilibrium state is
reached, the displacements are stored in the program sc that a change of
blast range or orientation will not necessitate solving the preblast

problem again,
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Due to the complexity of the solution procedure, the static
soluticn is found for only seven boundary condition combinations. These
should, however, solve any practical aircraft problem. The allowable

combinations are

1st End 2nd End
1) Clamped Clamped
) 2) Clamped Free
3) Clamped Svmmetric
4) Clamped Simply snpported
5) Simply supported Simply supported
6) Simply supported Symmetric

7) Free ring

4,1.10 Numerical Analysis

Integration of the second-order differential equations
(55-56) is accomplished nume=ically by extrapoiating the 2N displace-

ments Vi W in time. The integration used is the central difference

i
formula
9 =
S 2 -
Xeep = (O8)° X + 2 - X (88)
where
X represents one of the 2N displacements

At is the time increment

k denotes the time step, 0,1,2...

Note that step zero corresponds to static conditions just after the
blast has arrived but before the structure has responded. In order to
start the procedure, the back point X_, must be established. This is

1
done at step zero by letting

Lk RS
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X, = X +1/2 06)° X (89)

The central difference formula (88) is known as an open
method. For elastic problems the solution will be accurate, for all

practical purposes, as long as the solution remains stable. Too large a

time increment, however, will trigger a numerical instability. Stability

can be related to longitudinal and lateral vibration frequencies of the
beam (ref. 30). These criteria depend on the material properties and
the geometry, including the spacing between adjacent mass points. For
multilayered beams, average material properties are computed; and for
beams of vari-ble cross section, each station along the beam is checked
to find the critical At. The following equatinns represent the At
criteria, where the minimum value (when all links i=1,N are considered)

is appropriate:

1.0

(90)

\E; n 4s
0,1
\ Vnz-l hy

where n is the maximum nvmber of flanges assigned to any layer, h is the

total thickness of the cross cection, and

b
- Zpkhkbk
{ ksl
= = S———— (91)
E
B
EeMePe
k=1
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The constant r has as a value a theoretical upper limit of 1.0, but a

conservative value of 0.9 is used to avoid marginally unstable cases.

: It should be noted, however, that initially curved beam elements which
3 experience ''snap-through' buckling may require a significantly smaller
time increment than that predicted by the above formula.

For solutions which go inelastic, and for column buckling
types of problems, the solution may deteriorate without actually diverg-
ing. For these cases it is recommended that particular attention be f
pald to the validity of the results. This can eaéily be checked by
using a time increment somewhat smaller than that previously used and

3 comparing results.
4.1.11 DEPROB Response Comparisons with Experiments and with an
MIT Code

As partial verification of the DEPROB code, the dynamic

responses of two clamped-clamped uniform straight aluminum beams, sub-

: jected to impulsive loads on the center portion of the span, are pre-

sented in table 11 and figures 35 and 36. Deflection time histories are

shown for each beam as determined by 1) DEPROB calculations, 2) exper-
iment (ref. 29), and 3) MIT beam code.

These particular beam tests were selected due to the rela-

tively good experimental data and because of the inelastic nature of the
response. The second beam is nearly identical to the first except it is

twice as thick and does not exhibit as much strain hardening as the

first. 1In order to mrke these comparisons, the DEPROB program was

temporarily modified to incorporate an impulsive lateral load over a

ol ac ) Sac eVl il

portion of the beam.

T

The most important conclusion which can be drawn from the

B onc e docs
s

results is that the two structural response codes predict almost exactly
the same deflection time history (comparison of strains was not possible).
3 This is no surprise, since DEPROB is based to a large degree in the MIT

code; but, nevertheless, enough changes have been made so that these

1 results are reassuring. Secondly, the two experimental traces show no 3
% significant differences from the code predictions, except at late tires, j
E thus lending even more credence to the DEPROB results.

] ~108-
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TABLE 11

GEOMETRICAL AND PHYSICAL PROPERTIES OF BEAMS

Beam 95 Beam 111
DEPROB Models (ref. 29) (ref. 29)
Material Properties Aluminum Aluminum
6061-T6 6061-T6
E, psi 10.81 x 106 10.7 x 106
0o Psi 41600 41200
E¢s psi 3 161000 61200
p, 1b/in 0.098 0.097
Length, in 10.0 10.0
Thickness, in 0.124 0.242
Width, in 1.195 1.195
Total Impulse, psi-sec 0.1575 0.2724
Initial Velocity, ft/sec 5003 4480
Length of Charge
(centered on ¢) 1.932 1.988
Edge Conditions Clamped Clamped
Number of Masses
in Half Span Model 30 30
Number of Flanges 12 12 6
Time Increment, sec 0.75 x 10~6 0.75 x 10~
Measured Permanent
Set, in 0.581 0.522
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4.2 DYNAMIC ELASTIC-PLASTIC RESPONSE OF PANELS — DEPROP

The structural response program DEPROP was developed to calculate
the linear elastic and elastic-plastic response of aircraft panels to
static and dynamic pressure loads. Panels on aircraft can generally be
approximated by cylindrical or flat panels with combination of clamped
and simply supported boundary conditions and can be single or multi-
layered with isotropic or orthotropic material properties. The DEPROP
program is a modification of a dynamic nonlinear cylindrical shell
program called DEPICS (refs. 32-34) and contains the capabilities of

specifying a static uniform pressure loading (preload) and a trams.ent

uniform pressure loading on the panel.

The DEPROP analysis is based on the Novozhilov nonlinear strain-
displacement relations for large displacement response of thin panels
based on the assumption of undeformable normals. The program has
response options for either linear elastic or elastic-plastic material
behavior. The linear elastic option can be used with multiple layers of
isotropic or orthotropic material. An elastically isotropic material
possesses elastic properties which are identical in all directions and
are, therefore, independent of the orientation of the coordinate axes.
The elastically orthotropic material defined for these panels under
plane stress conditions possesses three orthogonal planes of elastic
symmetry that are parallel to the geometric coordinate axes. The
elastic-plastic option provides an.estimate of severe damage for a
single-layered isotropic panel for a material with an assumed uniaxial
bilinear stress-strain cusve. The inelastic formulation is based on the
Mises-Hencky yield surface, a kinematic hardening model and the Hencky
3tress-strain relations from the deformation theory of plasticity with
modifications for regions of elastic unloading and reyielding. The
DEPROP program calculates displacement, strain, and stress time his-

tories at selected positions on the panel to be used in conjunction with

various damage criteria.
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4.2.1 Basic Theory

The single-layered cylindrical panel is considered to have a

constant thickness h, mean radius a, subtended angle 60 and length %. The

o ——

c¢ylindrical coordinates (x, &, z) and the axial, tangential, and radial
displacement components (u, v, w) are shown in figure 37 on the coordi-
nate surface which is located at the median surface of the panel. The
governing equations of motion for the panel are obtained from the
principle of virtual work for a dynamic structural system (ref. 35)
which 1s given by

£, N ) :A
it J[ [ o1y o€54v - o1 - J[F - 6@ aal de =0 (92)
tl v A

where the panel 1s undergoing an arbitrary set of infinitesimal virtual 3
displacements Su, dv, 6w that satisfy the geometrical boundary conditions
and vanish at t-tl and 22;
nents of total stress; eij

the surface force vector; d is the displacement vector; and integrations

T is the kinetic energy; o are the compo-

1j

are the components of total strain; F is

are carried over volume V and deformed surface area a. It should be
noted that this principle holds regardless of whether tie material's
stress-strain relations are elastic or inelastic and whether the force
system 1s conservative or nonconservative. 1If it is assumed that

TaT(a,v,w), then

67 = 2L i + 2k By o gw 93)
au av ow
where the dots denote differentiation with respect to time. With

equation 93 and using integration by parts,

t2 t.)
el D i e ot
{ ST dt = - j (d—f' 3T Su +dt =5 Sv + 3t o 6w dt (94)
Cl tl
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It is assumed that the uniform blast pressure, p(t), acts on the
coordinate surface of the cylindrical or flat panel. As the panel
surface deforms, the elemental pressure force vector remains normal to
the coordinate surface so that it changes dir~ction during deformation.
The magnitude of this force vector also changes as the element surface
area of the deformed panel changes. It should be noted that the portion
of the pressure loading associated with the force vector's dependence on
the deformations represents a nonconservative force system. Based on
the rectangular coordinate system (X,Y,Z), the components Nys Ny and
n, of the inward unit normal surface vector and the components dx, dY
and dz of the displacement vector d were defined in reference 32 in
terms of u, v and w and their spatial derivatives. Thus, the vector dot

product of the force and virtual displacement is expressed as

Foo6d = p(t)(nygddy + nyédy + n,8d,) (95)

By neglecting terms above the second order and recasting in terms of the

virtual displacements Su, 6v and 6w, the virtual work done by the

external forces is given by

HF . 5d da = ” P(E)(NSu + N 6v + N sw)dd (96)
A A
where
-]
Nu = -(wx + wx)
o
Nv = -(we + vy + v)/a
Nw = l - (w+w- ve)/a + u
A = undeformed surface area

The subscripts on the displacement components denote spatial derivatives
(-]

and w denotes initial radial imperfection in the panel.
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With equations 94 and 96 and the relation

N 4 n

de 3E d€
@ . ij 14 i
6eij ™ Su + v Sv + e Sw

equation 92 becomes

T

2 N0
Je =
o S [ ] 3
{d % og5 e 4V 7)) NGRSt | 5
i

[a

1

v
d€
B [fl o <[5 B
+J,[[cij v 4V - S PNAA Y T
v A

N
+fffcij 3_:31 av - fprwde] Gw} dt = 0 . (97)
v L

A
The displacement components are assumed in the following truncated

series form with undetermined time-dependent coefficients, umn(t),

{ .
vmn(t), wmn‘t)'

M N
uEe,e) = LN et el (8)
n=1

m=1
M N
vE8,E) =y v e )er (9)
m=l n-:l
-116-
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M N
wx,8,0) = S S v eY(x)e” (@) (98)
o=l =1

where ¢m(x) and ¢n(6) are functions that satisfy the geometric boundary
conditions of the panels.

The initial radial imperfection in the panel
is represented by

M N
-] w w .
w(x,0) = j? zz a__on (x)67(8) (99)
m=] n=1l

where Amn are prescribed values based on known or assumed deviations

from the ideal shape of the panel. Based on equation 98, the following

relations are obtained:

M N M N
Su = N5 it 8 T - N w.w
Z r on®n’a? OV Von®n®a > 0¥ z 2, Swmn(pm¢n
m=1 n=] m=1 n=1 m=]1 n=1
Ju = Ual ov V.V w w.w
3u Qan’ avmn = ¢m@n’ aw 0m°n (100)

Introducing equation 100 into equation 97 and since $u

van and Gwmn are arbitrary, the following 3MN equations of motion are

obtained:

~
4

d IT R ot ,
.f < T + /j[.:iJ A1 gy - j [ deA =0 (i01a)
: v
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Ny
o€ .
e +fffc rildv-jfvdA-O (101b)
dt ov ij OVERS L
mn v A
3¢
d 9T _1ij _ff %
at W +fff°1j R §pda = 0 (101c)
mn v mn l-X

(m=1,2,3...M) (n=1,2,3...N)

U W v
where the integrands of the generalized forces (an, an, an) are
given by

“u Ju v av W oW :
Qmm I e amn BN (102)
mn mn mn

The kinetic energy of a single-layered panel is given as

o

1 8
T.ig_‘l [ j @2 + o2 + %) dxdo (105)
00

where 0 is tha mass density of the material and the dots denote differ-
entiation with respect to time. The rotary inertia contribucions to the
kinetic energy have been neglected. Modification of the mass density
for multilayered pane s is introduced in subsectiom 4.2.5. Further
development of equation 101 depends upon the establishment of the

strain-displacement relations, the stress-strain relations and the

displacement component spatial functionms.
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] 4.2.2 Strain-Displacement Relations

% The strain-displacement relations used in this analysis are
based on the assumptions: (1) strains are small compared with unity,

(2) the thickness of the shell is small compared with the radius and ;

§

/

| (3) the Kirchhoff - Love hypothesis that straight fibers which are

: normal to the undeformed coordinate surface remain straight and normal 3

! to the deformed coordinate surface and are not elongated, thus neglec-
: ting transverse shear and normal strains. The basic formulation of
the following set of nonlinear strain-displacement relations is attri-
buted to Novozhilov (ref. 36). The total 3train consists of membrane
; and bending components expressed by the form 2 = ¢ + z. The membrane

elongation and shear strains (exx’ € xe) on the coordinate surface

8e° ©
are expressed in terms of the displacement components and their spatial

coordinate surface which characterize the bending and torsional deforma-

derivatives:
1 2 2 2 %
€ex ™ Uy +-§ [wx + u + vx] + vV (104a)
Sl 1 2
4 S8 = al ol s %ty (i M)
4 2a
] (104b)
2 2 1 g
+ (ve - Aw)" + uy ]l + 5 WaWg
a
. . 1 1 1 -
e = Yy + 3 Yg + 7 Y (we + Av) + 2 vx(ve Aw)
é + oL u.u + 1 (; w,. + ; w ) i)
; a 9x a x9 3 x ‘
: Similarly, the change of curvature quantities (Kxx, K397 <x6) of the
;
i

tions of the panel are given by

=13
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K ™ Yyx 1+ ve/a - Aw/a + ux) (105a)

1
Kee 2 wee + 3 Vo + 3 (-w + ve) + = ux
a a
P e+ A ) @ = ) (105b)
a3 66 G} 8
+ L w + = (v, = W)™ + B )
2 Yoeux ¥ 3 Vg 3 Mgtv
a a a
A \
+ =3 we(we + v}
a
2 A 2.
== L 2 =)
Kxe a wxe it a vx & a2 wxe (Ve it g )
(105¢)
2X
+ az wx(w8 + v)

Primarily, only those nonlinear terms are included in equation 105 whizh
involve the radial displacement and its derivatives. The subscripts on
the displacement components in equation 104 and 105 denote partial
spatial derivatives. The end terms in equation 104 are included to
account for the initial radial imperfection of the panel as indicated by
Donnell's representation in reference 37. The parameter A is introduced
in the strain-displacement relations so that they apply to both curved
and flat panels. Thus, A = 1 for curved panels. For flat panels,

A =0, a=1, 8 is replaced by y, and 60 is replaced by b, the width

of the flat panel.
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4.2.3 Constitutive Relations

] In DEPROP, the behavior of the panel material is treated as

: elastic-plastic for isotropic single-layered panels and elastic for
isotropic and orthotropic multilayered panels. The elastic-plastic
analysis for the single-layered panel has been established as the basic
formulation in the DEPROP program. The elastic multilayered analysis is
established as an alternate option based on appropriate modifications of
the elastic-plastic formulation. In the DEPROP analysis the solution

involves total strains and stresses; therefore, for response in the

e stk el e S

inelastic region, it is convenient to use the deformation theory of

L fiacdiaiegy

plasticity iastead of flow theory which involves incremental strains and

stresses. Plastic deformation theory is based on an averaging process
that permits a total strain solution dependent upon only the final
stress state at the end of a loading path. In general, deformation

i theory is an approximation of the more rigorous flow (incremental)

| theory but 1s equivalent to flow thecry for an elastic-plastic material

when the stress loading 1is proportional, that is, the ratio of principal

stresses remain constant during the loading process. However, since the
dynamic response solution is solved incrementally in time by numerical
methods in DEPROP, the strain increments are small and the stress state
is fairly constant in the plastic region over each time step for which
the equations of motion are solved. Thus, the plastic deformation

;heory provides a much more accurate solution when the averaging process

E takes place separately over each small time increment as the response

é solution is obtained by a step-by-step timewise procedure.

ﬁ 3 In deformation theory the total strain is a function of the
state of stress and consists of a recoverable elastic component and a
nonrecoverable plastic component. It is assumed that the material is

3 incompressible, that is, no permanent change in volume, due to the

plastic strain. Thus, the total plastic strain is equal to the deviator

plastic strain. Furthermore, it is assumed that the material's uniaxial
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) stress-strain curve is modeled by the bilinear representation shown in
4 figure 38 in which the strain hardening is defined by slope Et' This
stress-strain representation is interpreted for the bilaxial state of
stress through the use uf the effective stress (c)-effective strain (€)
: concept in which the secant modulus (Es) indicated in figure 38 is

1 defined by

i o, + Et (e - eo) (106)

€

=1

L

[ ]
ot fal

i
|

g
d

S

where 9, €, aTE the yield stress and strain, respectively, from the

material's uniaxial bilinear representation. Thus, the effective

o

' stress, effective strain and secant mcdulus quantities are used to
] relate the bilaxial stress-strain condition to the assumed uniaxial a

bilinear stress-strain representation for the isotropic material. The

1 effective stress and strain, expressed as o = f(cij) and € = 8(21j)’
are functions of the total stress and strain components, respectively,

f and are more conveniently introduced in explicit form later in the

development.

The Hencky stress-strain relations for deformation theory

(ref. 38) are used in the plastic region and are given in the following

R Y i A e T ST i P

form:

vl 3 LYo Lo 5,1 (on)

fpy 7 F LAogmvo byl vy G o P 74373 Ty {
where E is the modulus of elasticity, v is Poisson's ratio and 5ij is the 1

Kronecker delta. The first portion of equation 107 represents the
elastic component of strain while the second portion represents the

plastic component of strain in terms of the deviator stress. For use in

equation 101, the stress-strain relations in equation 107 are inverted

into the form cij = f(eij) for the case of plane stress (ozz=oaz=o =0), :

and are given by

Xz

e
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S L ,‘\: -
e — [(A~vgleyy + vsbkksijl (1,§,k=1,2) (108)
s
1 where
‘ E
1 s 1
{‘ \)s = 2 = E (2 — V)
4
3 n, - l ") ", - n ~ = =,
€12 T 2 Sxo’ 11 T fxx’ €22 T Foe

E It should be noted that the forms of the stress-strain relations in the

; elastic (ES-E) and plastic regions are identical.

The yield criterion, in conjunction with a hardening rule, and
the stress-strain relation for unloading and reyielding by which the
, past strain history is preserved are to be established. The initiation
f of yielding for a biaxial state of stress is based on the Mises-Hencky

yield criterion (ref. 38) given as

1/2
+a0

2 2 2
11 t 9 "9y yp t 304,71 (109)

o= (o

T T

where o 1is the equivalent or effective stress and
911 % Y%x’ %22 T %6 %12 T %xg
This yield criterion states that plastic flow will occur when the equiv-

alent stress o reaches a value equal to the uniaxial yield stress in

tension 9ye A kinematic hardening model is employed in conjunction with

the Mises-Hencky yield surface which accounts for the Bauschinger effect
when reyielding occurs due to the strain reversals during unloading.

The Bauschinger effect for a strain hardening material is described by
the yielding behavior of a material at a reduced yield stress when

reloaded in the opposite direction from that of the initial vielding.

ek i B i
A.»x.u“:u._ 59 e faanata 00y o ndh
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The kinematic hardening models discussed in reference 39 assume that

during plastic deformation the yield surface translates as a rigid body in

stress space with the size, shape and orientation of the elliptical yield

surface being invariant. The kinematic hardening model to be used in
this analysis is illustrated in figure 39 for the Mises-Hencky yield

surface in the plane of the principal stresses g, and Ty Corresponding

to the initial yielding position (i) and the unliading position (f)
indicated in figure 38, the rigid translation of the yield surface for a
shift of the stress state from position (1) to position (f) is shown in-
figure 39. The change in total stress components from position (i) to

position (f; are defined ty a and, similarly, the corresponding change

ij
in the total strain components are defined by % , SO that
g r ar-l o or—l » or-l
ij 13 13 (£) 13 (1)
(110)
B r Er- Nr- Nr-l

f13(6) T f13(1)

where

(2]
[}

the number of elastic unloadings from yielded conditions
(r=1,2...)

o 0

%5 gij

(1) indicates initiation of yielding or reyielding
(f) indicates final position prior to unloading

The yield criterion for the translated yield surface is based on the

effective stress given as

- . e (2 _ r e (2 e (2 1/2
o [(oy1-911)7 = (05-011)(0,,- 22) * (99p72p7)" #3(0 5= ,) 7]

(11
Furthermore, it 1s advantageous in this analysis to relocate the origin

on the ¢ axis after each unloading such that the extended elastic
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unloading curve passes through the zero position. This is accouplished

by defining the effective strain as follows:

- JE S P ( r
: | lfl v+’ ) PR &,y 322) )
s
2
- (1'““s+”s)(511 gil)(gzz'ggz)] (L12)
2} 1/2
3 |
+(l+v Z O 12 |

Thus, the elastic-plastic behavior of the material for sub-
sequent yieldings after an unloading has occurred is always based on the
same 0 versus € curve which originates at position (0,0). This approach

14 and

?i‘ quantities for unloading and reyielding conditions to account for

requires that the stress-strain relations be mndified by the &

the past stress-strain historyv. The general form of the stress-strain
relations fecr the elastic, elastic-plastic, elastic unloading and
plastic reyielding regions are ideatical, so that the general stress-

strain relations based on the form of equation (108) is given by

E }

s

oij = aij + I::—E' Bl X )(e -B ) + v (Ekk gkk)°i1J (113)
s

1,3,k = 1,2)

where for the following regions of response,

a) initial elastic loading E =E, 3.? = g.r =0
s ij ij
b)  initial plasti 1 =E_, & =37 =
) plastic loading ES Es, aij Sij 0




c) qth elastic unloadin E=E, a.F =g 4 r q
8 s”Er 3gy T 3y gij gij
d) qth reyieldin = a e @ r.%4d
g Es Es’ aij aij’ gij 313

Thus, there are four basic regions of response for which the stress-
strain relations have been established by equation 113. For an elastic-

f perfectly plastic material, Et = 0 and a are set equal to zero in

r
i]
equations 111 and 113. It should be noted that for a strain hardening

material, a stress path which may move along the yield surface (neutral
3 loading) would not be properly represented in the analysis, since, upon

unloading, the yield surface would be rigidly translated.

] For elastic, isotropic or orthotropic multilayered panels, the
stress-strain relation formulation foliows the approach presented in
reference 40. In orthotropic layers, the geometric cylindrical coordi-
: nate axes and principal orthotropic direction are assumed parallel. The
multilayered cross section for the panel is shown in figure 40 with the
nomenclature used in the following formulation. The position of the
coordinate surface relative to the inner surface of the panel is defined
by the distance H. The membrane and bending stress resultants for the

multilayered panel are given by

T e

“om
3 O'xx Cllexx + Clzcee + Fll<x_x + FlZKee (114a)
vm .'
9o ™ Co2%ag ¥ Cpofux ¥ Fa2fug * FoXy (114b)
7% ac + F
x9  "33%xe T F33%%s (11l4c)
~ b = D PS + D +F + F L]
] xx 1% T P12%08 T T11%xx T F12%90 (114d)
: 3 b. Dy,x,, + D + : o ,
; 90 T 22598 T Y125 T Faofie ¥ Fot, (114e)
i s2ap +FL: .
] %% T "33%xe * F13%¢s (1141)
§
1 -128-
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The elastic stiffness constants Ci F and Di are defined

AR & 3
by
n
¢, = DB -n )
ij ij hk k-1
k=1
n
-1 K 2 2 =
By 2 2811 [y -y ) - 2 By = hy )]
k=1
n
1 ke, .3 3 =2 2
D1j 3 :E: Bij[(hk - hk-l) -3 H(hk hk-l)
k=1
+ 382, - h, )]
e = My
k k k_ k k_ k
gk Lk sk L ook gk Vx oFx
11 kk * 22 k k' 733 x8’ 12 k k
1-v v 1-v'v l-v v 1-v'v
x 6 8 8 x 6
where
E:, Eg are the moduli of elasticity in the x and 8 directions,
respectively, of the kth layer
vi, vE are Poisson's ratios in the x and 9 directions, respec-
tively, of the kth layer
Gia is the shear modulus of the kth layer
hk is the distance from the inner shell surface to the outer
surface of the kth layer
n is the total number of layers
e
For an isotropic material Ex Ea E, Vx Vs v and Gxe = 21+
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It has been found that the optimal position of the coordinate

surface for the most efficient modal convergence is at the neutral axis

of the cross section. When the coordinate surface is located at the
neutral axis, the interaction stiffnesses Fij vanish. These interaction
stiffnesses reflect the influence of the change in curvature on the
membrane stress resultants and the membrane strains on the bending

stress resultants. As discussed in reference 40, for the general case

PR TR S S s,

of an antisymmetrical orthotropic multilayered cross section, a neutral
axis, which is defined when all F

oo s
s

1 = 0, does not exist except for

special combinations of elastic characteristics of the various layers.
For the general case, the position of the coordinate axis, defined by H,

is established for this analysis by setting F,, = F,, = F., = F_ . =0 to

11 2 12 33
obtain the values
i
I n
k 2 2
z : Byy (e = Pyy)
i a k=L (115)

1j

n
k
2 Z Byy (g = My
k=1

and then H is determined by averaging these values as follows:

H=,l(l-{ + H,, + H,, + H (114)
4

It should be noted that for cases where the neutral axis does exist, the
coordinate surface is located at this position through the above proce-

1 dure. When the center of mass of the cross section does not coincide

. with the neutral axis, a slight discrepancy in the inplane inertia would
be introduced since the rotary inertia is not included in this analysis.
Experimental results indicate that the rotary inertia affected the response

quantities by about only 1% for a shell undergoing large displacement response.
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4.2.4 Displacement Component Functions

In equation 98 the displacement components are expressed in
series form as a product of time-dependent coefficients and independent
spatial functions ¢m(x) and ¢n(e). These spatial functions are selec-
ted so as to satisfy the geometric boundary conditions of the panels.
The boundaries of the panel are assumed to be either clamped or simply
supported and spatial functions are defined to cover all combinations
of these boundary conditions for the four edges of a panel defined by

x=0, L and 8 = 0, eo. 01 clamped edges the boundary conditions

are to be satisfied while on simply supported edges the boundary condi-

tions
2 2
I W 3w
w*v-u=—2-='—';-= 0
IxX 3

are to be satisfied. Since the panels are uniformly loaded, the assumed
displacement functions will adhere to this symmetry. The nondimensional
variables y = %5 and B = %g-are introduced for use in this analysis.

The spatial functions for €he u and v displacements are assumed to be

the same whether th~ edges are clamped or simply supported and are

given by
xb:(Y) = sin 2my
$-(8) = sin (2n-1)8 (187)
v q
¢m(‘r) = sin (2m-1)y
@Z(s) = sin 2nB
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The boundary combinations for the y and 3 directions are based
on opposite edges being both clamped, both simply supported or one
clamped cnd one simply supported. The w-displacement functions for the
vy and B8 directions are hased on the natural vibratory mode shares of a
uniform beam with corresponding end boundary conditions. These spatial
functions in the vy and B directions are given as follows for the three

boundary combinations:

For clamped/clamped or clamped/simply supported

Ay Ay Ay Ay
\*) m m m m
) = cosh — - cog — - ¢ sinh — - sin ———-)
m m T m m
A B -] A B A3 (ELED
w n n , n n
$ = cosh — - cos - Q sinh — - sin —
n h T n T T

where

Am or An are the odd roots of cos Xi cosh Xi = 1 for the clamped/

clamped boundary condition
Am or An are the odd roots of tan Ai = tarh Ri for the clamped/

simply supported boundary conditicn

cosh A\, - cos 1,
i i

i = sinh ki - sin X

i

i = norm
For simply supported/simply supported

W P |
o, = sin (2m-1)~
(119

:z = sin (2n-1)3

It should be noted that the functions given in equations 118 and 119 are

orthogonal.
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For the general curved panel, there are njire combinations of

boundary conditlons provided by the DEPROP program, namely,

yY-direction B-direction
1. Cc-C c-C
2% 5-S S-S
3. c-C S-S
4. S-S C-C
5. C-S c-C
6. c-C C-S
7. Cc-S S-S
8. S-S C-S
9. Cc-s C-s

The first four combinations (l=-4) have symmetry in both directiomns, the
next four combinations (5-8) have nonsymmetry in one direction and

combination 9 has nonsymmetry in both directions.

4.2.5 Governing Equations of Motion

With the strain-displacement relations (equations 104 and
105), the stress-strain relations (equations 113 and 114) and the dis-
placement component functions (equations 117-119) defined, the governing
equations of motion (equation 101) for elastic-plastic deformations are

developed further by performing the indicated spatial integratioms. For

convenience, the dimensionless quantities W = % , V= % , U = % R
° w X 79 ) b n
W 2 V= 8=5,L= T J=3,R= ¢ and K = <a are

introduced into the for%ulations. With this notation and the spatial
integration for the kinetic energ- ‘.1 equation 103 performed analyti-
cally, the governing equations of motion in the radial displacement

direction (equation 10lc) are given by
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o o =-h/2 mn o o
(m=1,2,...M)
(n=1,2,...N) gLz
where for the w-equations
kY’ kB = Y2 for C-C or C-S opposite boundaries
= 1/Y/2 for S-S opposite boundaries,
for the u and v-equations
ko= ko= 1/V2
and
Q
BV = ZLZRp(i = AW =W+ IV, 4 % UY) %
A T (121)
n 2 3 , sV
Q, = -2L Rp(.rwS + .rws + AV) T
mn
Y o AU
q, = -2LRp (wi{ + wY) =
on

Although equation 120 is given in terms wmn, the equations of motion for
the tangential and axial aisplacement directions can bz obtained by

i d i th r iate
replacing wmn vith an and Umn’ respectively, and using e appropria

kY’ k3 and q expressions.

The remaining spatial integrations in equation 120 are to be
accomplished numerically thus providing a mechanism for discretization
: through the spatial points selected to compute the representa;igﬁ.
elastic-plastic behavior throughout the panel. Thus, a sufficient
number of spatial points must be specified to obtain a satisfactory
deformation response solution. TFor integration through the thickness of

the panel in the z direction, it is convenient to separate the integrand
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into parts which either are or are not explicitly dependent on the z
variable, that is, involving membrane strains and bending strains. The
total strain quantities gij given in equation 120 for an arbitrary

position in the panel consist of the membrane and bending components

given by

- ' 122
Eij Eij + ZKij ( )

Therefore, the integrand can be given by £7 + 2£D where

JE 9€ o€

m XX 80 x6 .
Emonw T % 3w Y %% W (123a)
mmn mn mn
3K 3K 3K
b XX 80 x6
B o= oedw 7 % Wt Iy W (123b)
on mn mn

and the total stress components are obtained from equations 113
and 110 1in which i,j=1 denotes x and i,j=2 denotes 2. The

Legendre-Gauss quadrature formula (ref. 41) was chosen for the

numerical integration in the z direction where L is the number of points
selected through the thickness of the panel. In the ¥ and 8 directions

it is convenient to have even spacing and it is advantageous to have
spatial points on the clamped edges and at the center of the panel.
Simpson's quadrature formula (ref. 41) satisfies these desirable features
and therefore was selected over various Gaussian quadrature formulas.

The number of spatial points selected in the Yy and 8 directions &re

given by M and ﬁ, respectively, where M and N must be odd numbers. By
performing the indicated numerical integrations, equation 120 is recast

into the form:
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A 2, 2 M1 |1ty
9F@-LE-D T o l =
1 b
L R AN S I (124)

(m=1,2...M)
(n=1,2...N)

where
Ei are the zeros of the Legendre polynomial PE ¢)
h
24 "2 54
2(1-62)
H, = 3 >
i -
(@7 [Pr,, (6]
Hj e 4 (j,k = even)
= 2 (j,k = odd, except for j=1, Mor k = 1,N)
= 1 (j=1, M and k=1,N)
Y, =(§:£) >
3 \g-1

When symmetry is present in both the y and 3 direction, for example,
only one quarter of the panel need be considered and the spatial inte-

gration takes the form
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n/2 =/2
o [ [ Faedres s —1— z
. 5 9(M-1) (N-1)
where
M-1
Cj 1 j l, 2, 2
.1 .l
2 3=
N-1
dk = ] k=1, 2, =
1 L
2 ks

For the purely elastic solution of a panel,
thickness can be obtained analytically, and

simplification in equation 124:

L
2¢0 Z
¥ i i i
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the integrations through the

results in the following
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where o© replaces ao,, in £ (equation 123a), 9y b replaces ¢ in

13 1j b 1]
fb (equation 123b) and
m _ _E_ Tqe .
oij L L(1 v)eij + v kkdij] (127a)
b E 1
T o Bl-v)Kij LI (127b)

(1,j,k = 1,2)

The quantities Exx’ €48 and € 3 7 given by the normalized

versions of equations 104 and

(128a)

(128b)

(L128c)
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mn
(128e)
3¢ W W W
CL) AW 2 8 25 8 8
W Maw o Y Mgt Wy AV
W W
-J)\Ve N + AW W (128f)
mn mn
d¢ 3U JU. au Ju 3U
x0 8 B Y X _8.
A LS B, T (128g)
mn
v v v
3¢ v v 8 -
x8 1 = + IV == o+ IV = AW
5 v AW v y 3V 8 3v v
(128h)
3 oW W . W . W
x _ 1 8 Y 8 A
W AT R N T T L T
mn mn
W oW o
+ AV __1_ - AV W (l.;81)
3w Y mn

The quantities wa, K,. and Kxe are given by the normalized versions of

equations 105 and

3K

U
XX 1 9
> = = o = (129a)
oUmn L3 A dUmn

T R R TIr p—
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3
oK 3V b
; = 3. _8 | i
| 3an L2 Yy avmn ( 129b)
[ Q
K W ;
* l l * /\\ 3w %
] =% 2 2 1+, F U W) - s (129¢) i
aQ .
W 2 | g TU YW T 7 Ty W :
§ 3
i §
3K U 2 3
| 8 _ 1 x 3 Y .
[1 30 Moo YT Y 3 (1294) _
mn mn 1
E ¥
: 3
1 3K aV 'k
86 3 2 2
] —— = 2 A =
E W 20 +J wse + 4AJ Vs 3AJW) v
b (129¢)
. 3V ]
i + A3, 20 55 ;
; mn ’
E ‘
3K 2 W
80 _ 2 32 40 B
=2 = (Pl -t ) 5
mn
2 3W
- 4+ 200 - 3) - 29f )
+ (- + 20 - 3RV, - A wse) W (1291)
mn
h 2 Wy
g + (4 WB + 3JV) W
mn
one . Ei_w ob{ e
53U L L) QUmn =
3Kx9 = ,(L ’v{ + 2J2 w i")'__ + 2; W EA (" SQh,
3V B AEY L "ys 3V L Ty 3V
mn mn mn mn
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For the elastic response solution of multilayered panels, the

same formulatfon 1s vsed with several modifications. The stiffness

constants in equ~tion 114, Cij’ Fij and D,,, are considered to have been

ij

divided by a, a2 and a3, respectively, and R = a/hn. In equation 124,

p is replaced by p given by

and

L

_ b 2 b
Zui;ifi 4R°f
i=1

The gm and gb quantities given in equation 114 replace the appropriate

total stress quantities given in equation 123. With these modifications

in DEPROP, elastic response solutions can be obtained for multilavered

panels of isotropic or orthotropic material lavers.
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3 4.2.6 Numerical Analysis

The second-order differential equations given by equation 124
and corresponding equations for an and Umn are to be solved numerically
in time. The integration method used to obtain an approximate tim>wise
step-by-step solution is based on the central difference formula given
by

2
X4 = X (00T +2% =X (130)

where

X represents the normalized undetermined time-dependent displace-

ment coefficients, W_, V. and U
m’' mn mn
At 1is the time increment
k denotes the time step

This central-difference method replaces the higher order integration
method used in the DEPROP program in reference 1. The central-difference

method permits a time increment about 50% greater than the previous

higher order integration method without any significant change (less
than 1%) in the response solution for the panel problems considered.

The starting procedure used for this method is the same as that pre-

sented in subsection 4.1.10.

In solving the set of simultaneous second-order differential
equations, spatial integrations must be performed in the Yy and 2 direc-

tions and in the z direction for the elastic-plastic solution during the

N s

stepwise time integration. The required integrations are performed

numerically during each time step using the values of the displacement
coefficients W__, V and U for the particular time step to compute
m’ @mn mn

the displacements and their derivatives, the strain quantities and the

stress quantities used in equation 124.

e
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Several situations arise in the implementation of the biaxial

elastic-plastic theory in DEPROP which require special numerical treat-
ment. These situations are associated with the overshoot during the

time increment in which ylelding occurs, the criteria for determining

elastic unloading and restrictions if unloading is followed by immediate
reyielding, and the consistent determination of By Es’ v _ and o,, during i

s ij !

each time step. The special numerical schemes used to treat these three g
situations are described briefly in the following three paragraphs, i
respectively. ﬁ
X

Whenever a point in the panel yields or reyields during a time
increment (0 > oo), the stresses cannot, in general, be computed on a
purely elastic basis. The computation of stresses should follow the

bilinear stress-strain cuarve; but this 1is very difficult to effect since

% o is not a linear function of the cij's. Instead, an iteiaiive scheme

] is employed to adjust the cij’s proportionately, so that o = 9, By

] elastic relations, the associ?ted strains :ij (cij) are then determined

1 for the later computation of gij (equation 1!0). The process for
correcting for overshoot when yielding occurs between times tk-l and tk

is illustrated in figure 41. The values of ¢ and 0 are shown at time

; the values indicated at t, represent hypothetical uncorrected

fk-1 k
values. By linearly adjusting the stresses, the point (Eo, 50) is

reached. It is noted that the actual point at time Ty should be (Ek,
EA) instead of (Ek, 50), but the error in stress is relatively small
since EC/E << 1. The error introduced is proportional to the size of

the integration time step used.

For a point in the panel which is yielding at time Ceoy® elastic

1
unloading is detected when, in proceeding to the next time e the equiva-

lent strain decreases, i.e., ek < 5k-l' When this occurs, Ek and :k are

recomputed using the elastic unloading version of equation 113. Fur-

thermore, unless J, is less than J it is assumed that the point did

k k-1’
not unload. This possible inconsistency is partially numerical in

nature, and is partially due to the nonlinearitv of the equations
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Figure 41. Correction for Overshoot at Yielding

111 or 112. However, only rarzly will a point pass the strain criterion
for unloading but fail the stress criterion. Due to numerical discrep-
L ancies, it is possitle for the computed ;k in the unloading region to be

greater than 70 at time tk. this inconsistency results in reyielding

PP

without any overshoot correction being made. In fact, this event repre-
sents a numerical error and is usually associated with the initial
stages of numerical instability of the solution. Consequently, if this
event frequently occurs, the run is automaticallv terminated and a

smaller time increment must be selected.

] In the temporal integration sequence, the displacement coefficients

are computed for the end of the next time step at t through the

1

k+1

] central-difference formula (equation 130) given the past uisplacement

coefficients at T and ck_, and the acceleration at tk. “hese extrap-

1 olated displacement coefficients are then used to compute Tisodt oy
4

Then, for points in the plastic region, the cuantities -, ES and _ are
2>




0 ied

— e — R el R e R S S e 1%‘

evaluated in order to compute Oij at tk+l' However, ¢ is dependent on

Vg (equation 112), ES is dependent on ¢ (equation 106), Vg is dependent
on ES (equation 108), and oij is dependent on Es and e (equation 113).
Thus, a simple iteration scheme is used to simultaneously solve for the
three parameters E, ES and Vs’ so that a consistent determination of

oij cin be made at tk+1' Then, with the displacements, their derivatives,
eij and oij’ all determined at tk+l’ the accelerations are computed at
ck+l through equation 124 and the whole process is then repeated for the

next time step.

A method has been established for estimating time increments .t for
the temporal integration that would result in stable solutions for the
majority of panel cases. The proper time increment is a function of
geometric and physical properties of flat or curved panels and, for the
DEPROP formulation, also a function of the number of modes used and the
spacing between spatial integration points. The method for estimating
time increments is based on formulas for the higher vibratory frequen-
cies of linear elastic panels which incorporate the aforementioned
parameters. The basic frequency formulas for single-lavered flat and
curved panels were obtained from references 42 and 43 and modified for
multilayered panels. The time increment is estimated by the product of
the reciprocal of the frequency and an arbitrary adjustment factor. For
both threshold of permanent and catastrophic damage levels, the parel
response is nonlinear so that the arbitrary adjustment factors are
determined by back-figuring from the time increments found to give
stabl: solutions for various representative panels. In some panel cases
considered where the spacing betweei integration points was critical
for numerical stability, it was found that the .t formula used in refer-
ence 44 for finite difference solutions is applicable. This formula is
based on the time for an inplane elastic wave to propagate between mesh

points.

For flat panels the governing time increment used as the initial

estimate for At in DEPROP solutioms is the smaller _t obtained from the

ek o
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following two formulas. The first formula {s associated with the
highest solution frequency of a flat panel with inplane stresses which
are assumed to be at a level corresponding to yield or ultimate stress

of the panel material and is given by

I -1/2
2 Z % e P Pl
D,.A
m 22 'mn k=1 \
At - . A v
1 25 n n mn
Z B oy ) Z Eie i =)
k=1 k=1
(131)
where
= 2 - 2
on nw
‘an (:T_) * (b )
) = vield or ultimate stress
max

m = la~l+c

n = In-l+c

and c=0, 0.15 and 0.3 for S-35, S-C and C-C boundar+ conditions, respec-
tivelvy.

The second formula is associated with the elastic w~ave propagation

between integration points in the short direction and is given by

1/2
E 2 (hk-nk-l)
e B (132)
- N-1 22
—1N7-
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For curved cylindrical panels the smallest At obtained from five
formulas is used for the initial estimate for DEPROP solutions. The
first two formulas are associated with high frequency modes of cylin-

drical shells and are given by

- n -
1/2 -1/2
o, (h, - )
o é s L ame - 2-2 1/2|
At, = 7= — - = [(l-A Y+4u A ]
1735 % |2 2 \
L u (133)
-1/2
D (E2+X2)2 XAC’M
At = o= L + —
2 ™ 35 N o
R
a2 Z°k(hk'hk—1) L e Zok(hk_hk 1)
k=1 -1
(134)
where
- mra
A =
e
70

The third formula is associated with the elastic wave propagation

between integration points in the *-direction and is given by
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In cases where the length of the panel in the x-direction is much

shorter than the arc length in the 8-direction, it was found that the
flat panel formulas were more applicable than the above three formulas.
Thus, the fourth and fifth formulas used are based on equations 131 and
132 with changing D,, to D,, and b to aeo in equation 131, and b to z,ﬁ to

_ 22 11
M and C22 to Cll in equation 132.

The smallest time increment obtained from the modified formulas
used for either flat or curved panels represents an estimated value that
will generally give a stable solution, but does not necessarily repre-
sent an optimal value for minimizing computer time. If a stable solu-
tion is obtained with this estimated time increment, the time increment
can be increased until two consecutive solutions disagree significantly
and the penultimate time increment selected for future computer time
optimization, if desired. If the solution diverges using the initial
estimated time increment from the formula procedure, halving the time
increment should easily result in a solution in the stable range. The
DEPROP program provides the option of automatically using the above

estimated time increment or having the user select a value.

4.2.7 Preload Static Solution

To account for the steady-state airloads on the panel prior to
the blast encounter, the displacement components (u,v,w) are determined
for a unifeorm static pressure load (po). These displacements are used
as the initial values to start the dynamic sclution for che transient
blast pressure. The static dispiacements are obtained from all the

equations of motion of the form given in equation 124 by a relaxation
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technique that permits a solution of these nonlinear equations by
iteratively reducing their residuals +o zero. In the case of the
equation of motion, the residuals represent the accelerations in the
u,v, and w directions. The initial trial values of zero for the modal
displacement coefficients Un’ Von® Ym are used to start the relaxation

mn
procedure.

4.2.8 Approximate Solution for Elastic-Plastic Response of
Sandwich Panels

The elastic-plastic option of DEPROP is limited to handling
single-layered isotropic panels, so that a three-layered isotropic

sandwich panel is recuced within the program to an equivalent single-

layered panel based on equating corresponding extensional and bending
stiffnesses. A sandwich panel with face sheets of the same material
described by Ty Eo E and Et’ can be reduced to an equivalent single-
layered panel defined by the following quantities in terms of the

nomenclature of figure 40:

1 (h, + h, - h))
3 2 1 1/2
he o= BT ) [3hl(h3 - hZ)] (136a)
3 2 1
E(th, - h, + h.)
E = Sp— et (136b)
e h
e
o = Ec¢ (136c¢)
(o} e o
E (h, - h, + h,)
e t 3 2 1
Et = oY (136d)
e
3
1
“e h_ E{ 'k(hk - hk-l) (1ine)

¢ k=1
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where

h = equivalent thickness

BT —
®

E = elastic modulus of face sheets (equal to Oo/eo)
Ee = equivalent elastic modulus
i Et = strain hardening modulus of face sheets
E: = equivalent strain hardening modulus
g = equivalent mass density
¢ = equivalent yield stress

4.2.9 Initial Panel Imperfections

F There are initial geometric imperfections in actual panels on

E an aircraft which should be considered when a panel is being analyzed to
determine the threshold of permanent damage. Generally, initial devia-

; tions from the cylindrical shape are either not specified or simply not

1 known during flight conditions. The displacements and stresses induced w
in cylindrical panels may be sensitive to these imperfections depending

on their amplitude and shape as indicated in reference 34 for the full
cylindrical shell!. If initial radial imperfection data are available or

a nominal amoun* is specified as an approximatiun, such data can be

irncluded in the analysis in the form of modal imperfection coefficients,

A (reference equation 99).
mn

4,2.10 DEPROP Response Comparisons with Experiment and the
PETROS-3 Structural Code

To evaluate the predictive capabilizies of DEPROP, the calcu-
lated displacement and strain responses are compared with available
experimental results (ref. 43) and with results generated from the

finite difference structural code PETROS-3 (ref. 46). The scope of !

T




these comparisons is not extensive enough to result in a conclusive
evaluation of DEPROP, but does provide an initial evaluation of DEPROP
responge relative to available experimental data and another structural
code based on a different type of solution technique. For these com-
parison applications the DEPROP routine of NOVA was temporarily mated to
an existing pressure loading routine from Kaman AviDyne's computer
program library. This special loading routine included pressure time
histories with linear and exponential decaying functions which were used
as transient loadings for the DEPROP response comparisons with experi-

ment and the PETROS-3 structural code.

Some shock-tube test data were available for panels from tests
performed at the Armament Laboratory at Eglin Air Force Base and are
given in reference 45. The tests at Eglin essentially consisted of
expnsing clamped square panels to a blast from a disposable gas-bag
shock tube. The flat panels were subjected to load levels that produced
large permanent deformation and, in some cases, rupture of the material
along the clamped edges. Primarily, only the permanent sets of the
deformed plates were measured and in a few tests the deflection patterns
were measured by Moire fringe photography. Strain measurements were not
obtained for these tests. The square flat panels are 18 in. by 18 in.
and analytical and experimental comparisons are made for plate thick-
nesses of 0 063 in. and 0.071 in. The panel material is 2024-T3 alumi-
num for which a typical stress-strain curve 1is shown in figure 42 by the
solid curve. The bilinear representation of this stre-.3s-strain curve
used in DEPROP is given by the dashed lines and corresponds to a yield
stress of 50,000 psi and a strain hardening slope of 1.24 x lO5 psi.

The geometric and physical properties of these plates are summarized in
table 12. Pressure measurements were obtained from an instrumented
rigid panel tested separately under essentially the same loading as the
test panels. These pressure data were used to determine an approximate
analytical fit in reference 45 using a uniform spatial distribution with

the temporal decav given by

p(t) = P (1 -1t/") e ’ (13D
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TABLE 12

GEOMETRIC AND PHYSICAL PROPERTIES OF PANELS

Eglin Tests PETROS=-3
Property of Panel Comparisons Comparisons
. 2
Length (in.) 18 0 ' Flat Panel
width (in.) 18 20 ‘
Radius (in.) 100 ' Curved Panel
Subtended Angle (Deg) 11.48 ‘
Thickness (in.) 0.063 and 0.071 0.1
Modulus of Elasticity (psi) 10.5 x 106 107
Poisson's Ratio 0.33 0.3
2
Mass Density ih:i%i_ 0.259 x lO-3 0.259 x 10-3
in
Yield Stress (psi) 50,000 40,000
Strain Hardening Slope (psi)| 1.24 x 10° 0 and 1.5 x 10°
|
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where E

P 600 psi

m )
a = 5,7 %
t = 1.5 msec 5

The DEPROP panel routine with the special loading routine was
exercised for two test cases (panel thicknesses of 0.063 and 0.071 in.)
and the predicted permanent sets compared with the test measurements.

The DEPROP solutions employed 25 modes selected from a 7x7 array, a

o e s

15x15 spatial integration net over the quarter panel, and five inte-
gration points through the thickness. The 0.063-in.-thick panel under-

went severe plastic deformations and was considered to be near the

threshold of rupture, although it did not fail. Figure 43 illustrates i
the analytically determined center displacement time history for the j
!

0.063-in. panel. This figure shows an analytical maximum displacement L
of 3.43 in. and a permanent set of about 3.1 in. comparing closely with
the experimental permanent set of 3.0 in. Figure 44 illustrates the
deflection shape of the panel at various times during the response. The
changing shape pattern predicted by DEPROP corresponds favorably with
that observed experimentally through the Moire fringe technique and the
final permanent shape. Figure 45 shows the inner and outer surface
strain near the center of the panel where the maximum analytical strain
occurred. The maximum analytical tensile strain is 0.133 in./in. and
the strain behavior across the thickness of the plate at this position
is strongly membrane. It should be noted that the maximum tensile
strain probably occurs at the center of the clamped edge, but the number
of modes used analytically are not sufficient to predict the edge strain
accurately. The fracture strain for this material is about 0.15 in./in.
and, since this panel did not rupture the edge strain, is probably not
much greater than the strain near the center of the plate. For the
0.071~in. panel, figure 46 shows the analytically determined center
displacement time historv. Two panels of this thickness were tested

experimentally and the closeness of the two permanent sets at 2.7 and

2.8 in. indicated good repeatability of the experiment. Figure 46

e e e e el
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indicates that DEPROP predicts a permanent set of about 2.35 in. which
compares well with the experimental values. The differences in the
analytical and experimental permanent set values for .he two test

plates considered are less than 4%.

Comparisons of displacement and strain responses from DEPROP
with PETROS-3 are made for various panels subjected to a simple trans-
ient pressure loading. PETROS-2 (ref. 44) is a dynamic response struc-
tural code for the calculation of large elastic-plastic deformations of
plates and shells based on the rinite~difference method of solution.
While DEPROP is based on a modal type solution, there are several simi-
larities between the numerical methods used in DEPROP and PETROS-3.
Both codes use the same temporal numerical method (central-difference)
and the same Gaussian integration technique through the thickness of the
panel for elastic-plastic solutions. It should be noted that neither
DEPROP nor PETROS-3 can be considered as an absolute standard in these
comparisons. Which solution is more accurate in computing displacement
and strain quantities within a panel can only be determined by thorough
correlation with well controlled experiments. Solutions obtained using
DEPROP and PETROS-3 were based on the respective mode or mesh limits
presently dimensioned in each program for reasonable computer running
times and core size on the CDC 6600 computer. Thus, the solutions are
not necessarily optimal relative to complete convergence of strain
quantities throughout the panels. For example, neither the number of
modes used in the DEPROP solutions nor the finite-difference mesh size
used in the PETROS-3 solutions are sufficient to determine accurately
the strains at the clamped edges of a panel undergoing large plastic

deformations where large strain gradients exist verv near the edge. For

this reason, only comparisons are made with center strains orf the panels.

For all the panel solutions using DEPROP and PETROS-3, an adeqguate time
increment was selected so that numerical convergence was achieved on a
temporal basis and the same number of integration points through the
thickness was used in both code solutions. The panel prcoblems selected
were all svmmetrical so that onlv one quarter of the panel was con-

sidered in all solutions. Ffor 2ZPROP solutions, 25 modes were selected
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from a 7x7 array and a2 15x15 spatial integration net was used on the
quarter panel. For PETROS-3 solutions, a uniform finite-difference mesh
of 16x16 on the quarter panel was modified by halving the mesh size near
the center and edges of the panel to produce a nonuniform 20x20 mesh.
Comparisons of center displacement and strain responses from DEPROP and
PETROS-3 were made for simply supported and clamped 20 in. x 20 in.

x 0.1 in. square paneis with purely elastic, elastic-perfectly plastic
and elastic-strain hardening materials. A clamped rectangular panel and
a clamped cylindrical panel, both with material strain hardening, were
also used for the response comparisons. The geometric and physical
properties of the various panels are summarized in table 12. Through
the special loading routine, these panels weie subjected to a uniform
pressure loading with a trilangular pulse shape that instantaneously rose
to the peak pressure at zero time and decayed to zero pressure at 2

msec.

The DEPROP and PETROS-3 comparisuns of center displacement and
strain responses for various material conditions are shown in figures 47
through 52 for the simply supported square panels at a peak pressure of
200 psi; in figures 53 through 59 for the clamped square panels at peak
pressures of 250 psi (elastic-plastic solutions) and 100 psi (purely
elastic solution); in figures 60 and 61 for the clamped vectangular
panel (aspect ratio of 1.5) at a peak pressure of 250 psi; and in
figures 62 through 64 for the clamped cylindrical panel at a peak
pressure of 250 psi. From these comparisons of DEPROP and PETROS-3

responses, the following observations are made:

1. The comparisons for purely elastic large displace-
ment response of a square clamped panel (figures 52°
and 54, show satisfactory agreement between DEPROP
and PETROS-3 for both center displacements and

strains.

[ 9]

For large elastic-plastic deformations of these
panels, the comparisons indicate that the best
agreement (magunitude differences less than 5%)

occurs for all ~enter displacement responses

-161~

T

ST

et L, e

PR

T




i g ki vy e

3.0

SIMPLY SUPPORTED ALUMinum PANTL
ELASTIC-PERFECTLY PLASTIC MATERIAL
20" x 20" x 0.1"
2 * 200 PSI (TRIANGULAR LOADING)
DEPROP (25 WMODES)
—— e PETROS-3(20 X 20 MESH)

Q PETROS-3(16 X 186 MESH |

CENTER DISPLACEMENT (IN)

TIME (MSEC)

igure +7. Jompariscn of JEPRCP and 2EZTRCS-3 Displaczement

Respense for Simplv 3udterTac Yinmel with
Reffzacicly 2URER A€ Macaiaw

SNk
Sl SES IS

T, UGN I e~ <. f e i ..




K
|/
5.
4
1
i
F
0.12 N
SIMPLY SUPPORTED ALUMINUM PANEL
] ELASTIC- PERFECTLY PLASTIC MATERIAL 1
é zollx zoll x Q.l"
C.IOF  py =200 PSI (TRIANGULAR LOADING) 4
- DEPROP (25 MONES) ;
z
; I == o= wme == PETROS - 3 (20 X 20 MESH) :
4 F 4 k
{ W 0.08
A frd '
€
: > ;
- (72} ;
1 x 5
z :
’ 2 o.06 :
= :
=]
3 z
i < 5
x i
= §
? .04 4
« :
[*¥]
[t
z
['Y]
(&)
0.02
o A
TIME (MSEC)
§
Figure +8. Comparison of DEPROP and PETRCS-2 Ilnner straix
Lesponse for Simply Supported anel wicth Elastic-
Terfecslv Plastic Material
§

_—
n
(&%)




SIMPLY SUPTUKTED LUMINUM PANEL
ELASTIC-FESFECT . PLASTIC MATERIAL
0.10 = 20"x 20"x 2.t"

Pm: 200 PS, TRIANGULAR LOADING)
DEPROP (2% MODES)

— e e PETROS-3 (20 X 20 MESH)

0.08 -

Q.06

0.04

CENTER STRAIN ON OUTER SURFACE (IN/IN)

0.02

TIME (MSEC)

Figure 49. Comparison of DEPRCP and PETROS-2 Juter Strain Response Zor

Simply Supported Pamel witzh Elastic-Perfect v 2lastic Material

-
(o2}
£




CENTER DISPLACEMENT (iN)

2.0

SIMPLY SUPPORTED ALUMINUM PANEL
ELASTIC-STRAIN HARDENED MATERIAL
20" x 20" x 04"

Pm = 200 PS| (TRIANGULAR LOADING)
DEPROP (2% MOCES)

o e e == PETROS-3 (20 X 20 MESH)

fizure 30.

0.5

TIME (MSEZ)

()}
n

Comparison cf DEPRCP and 2ETRCS-C DJisplacement Response =05
Simply Supported Panel with ZIlastic-3itrain Hardened ater:ta.




ok

F

2 S

S s

CENTER STRAIN ON INNER SURFACE (IN/IN)

0.08

S e

SIMPLY SUPPORTED ALUMINUM PANEL
ELASTIC-STRAIN HARDENED MATERIAL
20"x 20°x 0.1"

om : 200 PSI (TRIANGULAR LOADING)
OEPROP (25 MODES)

— e = — PETROS-3(20 X 20 MESH)

TIME (MSEC)

31. Comparison ot DEPROP and ?ETRCS-3 Ianer 3train Respeonse Zor
Simplv Supported Panel with Zlastii-3train Hardened HMaterial

P

o ot e




g il Lah Lo

i

T

PR

-nr!bzww g

CENTER STRAIN ON OUTER SURFACE (IN/IN)

Q.2

0.10

0.08

0.08

0.04

0.02

Figure 32. Comparison of DEPRC’ and FETRCS-1 juter 3Strain

SIMPLY SUPPORTED ALUMINUM PANEL
ELASTIC-STRAIN HARDENED MATERIAL
20" x 20"x 0.1"

Pm * 200 PSI(TRIANGULAR LOADING)
DEPROP (23 MODES)

— e e e PETROS -3 (20 X 20 MESH)

TIME (MSEC)

Response

Zor
Simply Supporzed P.ne. with Zlastic-3train Hardened “ararial

—a
[e])
~1

. M o i 2 2 b R 1

T

7 e e

K T T I e T




“AETe-ies

CLAMPED LLUMINUM PANEL
ELASTIC MATERIAL
20" x 20" x 0" (;

Pm 100 PSI (TRIANGULAR LOADING]
DEPROP (25 MODES |
‘ — e wmee —aem PETROS -3 (20 X 20 MESH !

T
n
T

2.8 - ;
3 z [
== |
- 1
S 06 ;
w 6 - s
b § | !
w |
9 |
1 « |
3 -
] S i
[*;]
a |
0.8 -
T [
3 d |
- P
: = .
] w !
] © |
] I
2.2 =

2
[ s B 3 -] !
1
TIME [MSEZ! E
-2.2 |-
I
1
-0a b
f
1
1 Figure >3. Jomrarison of ZEPRCP ana 2ETROS-J Displacement Resconse or
a Clamped Ilastic 2inel 8




T —

CENTER SIRAIN (IN/IN)

i

|

0.016 ~ é
| CLAMPED ALUMINUM PANEL ]
0014 — ELASTIC MATERIAL

s il

20" x 20" x 0.

| Pm?!00 PSi1 (TRIANGULAR LOADING) |
JEPROP (25 MODES) 1
0.012 bm === — —— PETROS~3 (20 x 20 MESH) N i
b

Q.01 »~—

2008 —
3
:
e
3006 — JUTER SURFACE - ‘
4
2004 ~ )
2.002 - B
-
1
g

5
TIME [MSEZ!
figure 34. Jomparison of JEPROP and PETROS-J 3train Response “or 3 p
Clamped Zlasticz 2anel

L
]
:
.
3

g
Y
ooy o bl el o 57 s 5 i 3




r—-—mw_ ) Ty Tr——

4.0 r

CLAMPED ALUMINUM PANEL
ELASTIC-PERFECTLY PLASTIC MATERIAL
20"x 20" x 0.4"

Pm® 250 PSI (TRIANGULAR LOADING)
DEPROP (28 MODES)

o= == = —— PETROS-3 (20 X 20 MESH)

CENTER DISPLACEMENT (IN)

TIME (MSEC)

Figure 53. Comparison of JEPROP and 2EIR
1 Zlamped Panel with Elastic-:

u C

5=3 Displazement Resvponse I0r
erfecclvy Plastic Mfarar:al

170




.14
CLAMPED ALUMINUM PANEL
ELASTIC-PERFECTLY PLASTIC MATERIAL
20"x 20" x 0.1"
.12 - Pm * 2350 PSI (TRIANGULAR LOADING)
DEPROP (23 MODES)
— e e e PETROS - 3 (20 X 20 MESH)
z
< o0
2
w
(8]
<
€
3 0.08
@
@
z
) z
&
! z 006
i <
[
0
x
=
z 0.04
w
(%]
F
0.02
0
TIME (MSEC)
¥ Figure Zo. Comparison of DEPROP and PETR0S-3 Ilnner 3train Response

& Clamped Pane! with Zlasctic-Perfectlv Plastic Mazerial

T oNWEr®




T

CENTER DISPLACEMENT (IN])

4.0

)

ri

CLAMPED ALUMINUM PANEL
ELASTIC-STRAIN HARDENED MATERIAL
20"x 20" x 0.1"

Pm® 250 PSI (TRIANGULAR LOADING)
———— DEPROP (25 MODES)

am — == =— PETROS- 3 (20 X 20 MESN!

TIME (MSEC)

2ure 57
a Clamped fanel with Zlasti

Comparison oI JEPROP and PETE

Hdarerisl

Eha
(e



el M

4
E 0.12
1 CLAMPED ALUMINUM PANEL
1 ELASTIC-STRAIN HARDENED MATERIAL
20"x 20" x 0.1"
0.0 om * 2350 PSI (TRIANGULAR LOADING)

DEPROP (23 MODES)
— e e e PETROS - 3(20 X 20 MESH)

CENTER STRAIN ON INNER SURFACE (IN/IN)

TIME MSEZ)

Zomparison 3 JE?PRCP ind 2ETIVS-3 Inner 3cralin lesconse
for a Clampea Parelvith Zlastic-ftrain Harenes Material




CLAMPED ALUMINUM PANEL
ELASTIC-STRAIN HARDENED MATERIAL
20" x 20"x 0.1"

0.10 - Pm* 250 PSI (TRIANGULAR LOADING)

= DEPROP (25 MODES)
; —e— e = PETROS -3 (20 X 20 MESH)
{ 0.08 -
£
5
r‘f I~\‘.""-l--.._----""'-..'--‘_-‘---_-"-_
1 0.06 - ‘IJ'

CENTER STRAIN ON OUTER SURFACE

1 4
‘r 1
1
4
:
| TIME (MSEC)
g o
1
I
|
: Tigure >3 oecemparilben o ZEPRGR agmd PETRCE-] Jutar Jorialn lesgaonse ¢
4 - o - . o a e o B y '3
Ior 3 Zlampes Panel wicn IZlastice-strvain Hariened Tlat2rial !
3
1 §
y 3
3 E
%
) 3
1 4
4 :
E

174




CLAMPED RECTANGULAR ALUMINUM PANEL

ELASTIC-STRAIN HARDENED MATERIAL

ASPECT RATIO: 1.5

20" x 30" x 0.1"

om * 250 PSI ¥ N
DEPROP (25 MODES)

1 — e == «m= PETROS - 3 (20 X 20 MESH)

PR—

T

CENTER CISPLACEMENT (IN)

TIME (MSEC)

Figure 20, Comparison of JDEPROP ana 2TTRCS-I Dispglacemenst lestonse or
a Clamped Rectangular Zanel

FORTromeoT. o

e - e

T




CEMTER STRAIN (IN/IN)

CLAMPED RECTANGULAR ALUMINUM PANEL
ELASTIC-STRAIN HARDENED MATERIAL

20" 30" x 0.1

O * 250 PS)

ASPECT RATIO : 1.5

INNER SURFACE, SHORT DIRECTION

— DEPROP (25 MODES)

0.10 b  =————— PETROS-3(20X 20 MESH) A~

0.08 - af

J.06 ~

0.0 b

QL s =
|
| .
RS ' : |
0 0.8 1.0 i3
TIME (MSEC)
Tigura ol. lomparison 27 JEPACP and PETTRCS-! 3crain Kesponse for i
Jlamped Rectanguiar 2ane.

3
(8]




T Y T R TEREWY W YT ’ MR e o T I v TR L S ib ;-qy Rt o
.
. = - 4

5 " ey,
1
L b
40
7 \\
3.0f
F ]
[
- 4
|
W
<
3 20
0
Q
a
W
e
4
W
()
CURVED ALUMINUM PANEL
ELASTIC-STPAIN HARDENED MATERIAL
0 e = 100.0", £:20.0", 8, 11.48% h=0.1"
) Bm * 250 P51 (TRIANGULAR LOADING)
s DEPROP (25 MODES)
= = = — PETROS-3 (20 X 20 MESH)
0 | |
0 0.5 1.0 1.5

TIME (MSEC)

Figure 62. Comparison of DEDROP and PETROS-3 Displacement Responce
for a Clamped Curved Panel

177




CURVED ALUMINUM PANEL
: ELASTIC-STRAIN HARDENED MATERIAL
a2100", £ 2 20", G, :11.48° hs0.1"
3 ~ 10l  Pm?®250PSI(TRIANGULAR LOADING)
‘_j g DEPROP (23 MODES) :
, z —— — — PETROS - 3 (20 X 20 MESH) A
é 5 ﬂ
Y : v
| S ]
3 a ;
A [* 4
W
-
£
* g
' <
: <
] «
) =
9 2]
i -d
, =
: x
. <
E :
W
':l ;
1 z
(S
r
3

TIME (MSEC)

TP Y PO P

Figure 63. Comparison of DEPROP and PETROS-3 Axial Strain Response
for a Clamped Curved Panel.

b o o Toone e

i b b




b ok e ratiani e b L G m e T & e o e T o

CURVED ALUMINUM PANEL
ELASTIC-STRAIN HAROENED MATERIAL .
0210042 20", Gyt 11.48%n10.1"

Pm * 250 PS1(TRIANGULAR LOADING)

DEPROP (25 MODES) F e
— e —— PETROS-3 (20 X 20 MESH) /] N — ]

CENTER CIRCUMFERENCE STRAIN ON INNER SURFACE (IN/IN)

TIME (MSEC)

' Tigure 64. Comparison of DEPROP and PETROS-3 Circumferential Strain
Response for a Clamped Curved Panel




——

rw " e b (ot it e et
]

and strain response in the simply supported

and perfectly plastic plate (figures 47-49);
but as the clamped edges, strain hardcning or
curved geometry are introduced, the differences
in strain magnitude increase, generally varying

betweeu about 5 and 25%.

The general behavior of the DEPROP and PETROS-3
response solutions is the same throughout the
panels, the primary differences are characterized
by larger peak magnitucdes and times of peak
response being predicted by PETROS-3 for both
displacement and strain responses. The largest
differences seem to be assoclated with the clamped
boundary conditions. Near the end of this inves-
tigation, PETROS-3.5 (ref. 46) became available.
PETROS-3.5 is a revised version of PETROS-3 that
has improved the finite-difference representation
near the boundaries and the numerical scheme used
in the Incremental plasticity model. The elastic-
plastic solution for the square clamped panel was
obtained using PETR0OS-3.5 and compared with the
PETROS-3 results. It was found that differences
in the central displacement and strain responses
were less than 27 between the PETROS-3 and 3.5

solutions for the selected panel.

At early times during the response, the DEPROP
center strain response exhibits some oscillations
not produced in the PETROS~3 strain response. In
the PETROS-3 solution at early times, the central
position of the plate remains absolutely flat,
exhibiting just membrane strains in this region of
the plates. However, based on the modal-type

solution in DEPROP, this central portion of the
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plate is only nearly flat and exhibits bending
strains as well as membrane strains in this region

which account for the oscillations in the strain

plots at early times.

f 5. It was found that the convergence of the strain

_ response in the PETROS-3 calculation is much more

4 sensitive to increases in time increment and mesh

“ size than the DEPROP calculation is to increases in
; time increment and decreases in the number of modes

1 used.

1 6. Because of the larger strain gradient near the

E clamped edges of the severely deformed panels, it is
felt that neither DEPROP nor PETROS~3 accurately
predicts the strains at a clamped edge with the
modes and finite-difference mesh, respectively, used
herein. To assess the degree of accuracy of analy-
tical predictions, experimental strain data are

needed near the clamped edges or selected panels

loaded with a well defined pressure time history.

7. Although neither code's solution parameters, such as
modes and mesh size, should be considered as optimal
for the computation of converged center strains, it
was found that PETROS-3 required a smaller time
increment than DEPROP for a nearly convergent
center strain solution. For these panels using the
aforementioned solution garameters, DEPROP solutions
used about half the central processor computer time
used by PETROS-3 solutions.
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SECTION V
DAMAGE CRITERIA

The computer program contains the option of selecting two levels of
damege to the structural elements being analyzed. One level corre-
sponds to no permanent damage and the other level corresponds to catas-
trophic damage. However, the analyst must interpret the effect that the
damaged panel or structural element has on the performance or mission
of the aircraft. The analyst also has the option of specifying the prob-
ability chat the damage level selected will be exceeded. For example,
the analyst might specify the no-damage level and a probability of 5
percent that the no-damage level will be exceeded; that is, that d.unage
will occur. The method of establishing the probability that a syecific

level of damage will be exceeded will now be described.

Designate the structural response parameter (stress >r strain)
by R and the value of R at which the specified damage level occurs by
Rd' The preblast value of the parameter will be designated by Ro and
the maximum value calculated by the program with respect to time by Rp.
The value of Rp will be defined such that the probability of exceeding
Rd will be the specified value, m. This is accomplished by estimating
the accuracy of the prediction and then assuming that the probability
density distribution of the response is normal. The assumption of a
normal distribution is based upon the central-limit theorem, which
states that the sum of independent variates from the same or different
distributions is normally distribucted in the limit and that this limit
is approached very rapidly (see ref. 47). The large number of variables
which influence the response of the structure justifies the assumption

of a normal distribution.
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Assuming that the analysie is unbiased, Rp is the mean of the
normal distribution 1illustrated in figure 65. The saaded area rspre-

sents the probability that the specified damage level Rd will be exceeded
by w percent. It is assumed that the inaccuracy in Rp can be defined by

a factor X, such that three standard deviations in response will be
equal to XRP; that is,

30 = XR 138
g 5 (138)

The choice of three standard deviations is arbitrary. The problem of
defining X so that it corresponds to the number of standard deviations
choser will be treated later.

The number of standard deviations, n, associated with the prob-
ability, m, can be determined from normal probability distribution
tables. For example, if m is 5 percent, the associated value of n is
1.645. Assembling all of the above assumptions and observations, the
value of Rp sought, which we will denote by ﬁp, can be written as

Rp = Rd - no (139)

or, introducing equation 138 with the respouse, Rp, replaced by the

desired response, RP’

R-R-n§n (140)

R o= (141)
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PROBABILITY DENSITY FUNCTION

]

|
L :
Rp Rq

RESPONSE PARAMETER, R

*Provided that R = R}
P jo

Figure 65 - Normal Probability Density Distributicn of
Response Parameter, R
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(142)

The remaining problem in the implementation of the above equations is

the determination of the structural response, R,, associated with the

d
level of damage specified, and the determination of the inaccuracy fac-

tor, X.

5.1 DETERMINATION OF DAMAGE PARAMETER, Rd

The program contains the option of selecting two damage levels,
ao-damage and catastrophic damage. The no-damage response level is
interpreted as that level of structural rzsponse which represents the
threshold of damage. The severe or catastrophic level of damage 1is
interpreted as that level of response at which the material ruptures or

fractures.

When the damage level and the percent probability that the level
will be exceeded are specified, the program can be used to determine
the range at which the desired response will occur with the desired
probability. The process is iterative; a trial range 1is specified, and
the response 1s determined and compared to a criterion. The range is
adjusted within the program and the process is repeated until the ratio

of maximum stress (Rp) to the critical stress (ﬁ;) coaverges to unity.

For no-damage response, the program uses the largest value - f the
ratio of maximum stress (Rp) to the critical stress (ﬁ;). Ig_order to
permit an orderly iteration process, values of the ratio (Rp/Rp) greater
than unity must be allowed. In addition, the critical stress may be
greater than the yield stress, depending upon the selected ‘ralue of
probability, m. Actually, the material yields and, presumably, the struc-
ture follows a different branch of the stress-strain curve; hence, an

artificial means must be incorporated within the program to permit
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hiv'ier stresses than the yield stress along the elastic curve. This is
asccomplished by disregarding yielding and using the extended elastic
stress-strain curve for the no-damage condition. This artifice permits
a continuous variation of the response with range, which is necessary

in order tuv achieve a systematic iteration process.

The process is similar for catastrophic damage. For plastic materials
or for buckling analyses, the process is identical, except that larger
stresses are considered critical. Otherwise, the elastic-plastic stress-
strain curve must be made to accommodate strains exceeding the fracture
level. In DEPRO?, the stress-strain curve is extended beyond ultimate

strain with the same strain hardening slope, while in DEPROB a perfectly

plastic extension of the stress-strain curve is assumed. Both of these
artificial extensions permit the calculation of response strains beyond ;
the ultimate strain and therefore allows a smooth iteration process

for all selected values of probability, m.

The type of structure being analyzed determines the level of stress
or deformation associated with the threshold of damage or catastrophic
damage. Both levels of damage are discussed for single-layered and multi-

layered honeycomb ranels and for stiffeners, frames, radomes, and ribs.

5.1.1 Single-Layered Panels

The DEPROP program is used to determine the stresses and strains
induced in single~layered panels by steady-state and transient pressure
loads. These stress and strain quantities are related to conditions in
the material that can produce permanent deformations or rupture of a
panel. Yielding of the material is taken as the limiting condition
for threshold of permanent damage for metal panels. Since the panel
deformations are biaxial, the yield stress is compared with the equiv-
alent stress o associated with the Mises-Hencky yield criterion
(equation 109). This yield criterion states that plastic flow will

occur when the equivalent stress 0 reaches a value equal to the uniaxial
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yield stress. For plastic or reinforced plastic materials which arve
k' assumed to be loaded elastically to an ultimate stress or strain and
therefore attain a fracture condition without actually yielding, 70

percent of the tensile ultimate stress and 100 percent of the compressive

s

ultimate stress are taken as the critical stresses which define the

T

limiting condition for threshold of perwanent damage. It should be
noted that curved panels could undergo elastic buckling prior to material z

S S

yielding, but this phenomenon is not considered critical since after the

load is removed the panel returns to its original undeformed condition.

] For catastrophic damage of single-layered metal panels, large
inelastic deformations are produced during the response that lead to

rupture of the material. An approximate rupture criterion is established ;

Y, o

which compares the uniaxial rupture fracture strain of the material 1

with the effective strain & (equation 112) using checks to insure that i

bl o i

a tensile strain condition is present. For catastrophic damage of plas- j

tic and reinforced plastic panels, the criterion is based on the ulti-
1 mate tensile gtress of the material and is compared with the principal
tensile stresses in the panel. For brittle materials, it is assumed

that fracture occurs at the ultimate tensile stress.

5.1.2 Honeycomb Panels

The multilayer panel option of the DEPROP program is used to

determine elastic stresses and strains induced in honeycomb panels due

R B T

to pressure loads. The honeycomb panel is a three-layered panel with

} either isotropic or orthotropic material properties.

The yield stress in the frce stieet is used as one criterion
1 l or limiting condition for metal face sheets when establishing the

threshold of permanent damage for honeycomb panels. For reinforced

plastic face sheets, 70 percent of tensile ultimate stress and 100 per-
cent of compressive ultimate stress are used for the threshold of

permanent damage. Other criteria for honeycomb panels are often required

cler T v G

TR
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; ! since the panels can experience local instabilities such as intracell
: buckling or face sheet wrinkling. The intracell buckling occurs mainly

for honeycomb panels with thin face sheets, and face sheet wrinkling

occurs mainly for low-density cores and weak bonding systems. If these

i
l instabilities are severe enough to result in permanent deformations in

the panel, they are acceptable as a liniting condition for threshold

of permanent damage. Formulas are given in reference 48 which relate i
intracell buckling or wrinkling to the geometric and material proper- q

ties cf the honeycomb panel as fnllows. For intracell buckling, j

¢ 2
O O (3) (143)
where

G critical stress in the face sheet, psi

f = face sheet thickness, inches
d » core cell size, inches

E. = elastic modulus of the face sheet, psi
For wrinkling,
= 1/3
Oy 0.5 (GcEcEf) (144)

where
o = critical stress in the face sheet, psi
G = core shear modulus, psi
E = core modulus of elasticity parallel to the core depth, psi

E. = modulus of elasticity of the face sheet, psi
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As indicated earlier, the elastic-plastic option of DEPROP is
limited to single-layered isotropic panels. Consequently, in deter-
mining catastrophic damage of honeycomb metal panels, an ''equivalent"
single-layered panel is developed in subsection 4.2.8 to represent the
deformation response of the original honeycomb in the elastic and
inelastic ranges. Catastrophic damage for a honeycomb metal panel is

based on the rupture strain of the face sheet material.

5.1.3 Stiffeners and Frames

The DEPROB routine can be used to calculate the response of
stiffeners and frames combined with local effective skin due to a
pressure loading. The dynamic response includes deflections and accel-
erations of the structural element plur stress throughout the cross
section, particularly stress in the outer fibers of the cross section.
The straesses of the outer fibers apply to either the flange plus the
effective skin attached to the flange or to the outstanding leg of
the element. In general, either can be loaded in tension or com-
pression. To determine the threshold of permanent damage, the stresses
in the outer fibers are compared to the yield stress for temsile or
compressive loads. The magnitude of the moment at the fixed ends of a
uniform beam carrying a uniform static load is twice that of the moment
at tae center of the beam. Consequently, the threshold of permanent
damage will be achieved primarily by buckling of the outstanding leg at
the end of the beam for this case, rather than yielding in tension or
compression at any point along the beam. Crippling stress formulas are
available for local buckling of outstanding legs of different shaped
stringer or frame elements. The crippling stress formula used in the

program is identical to that used in reference 49, page Cl.2-36:

tf 2
£ = xe|t (145)
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where y

fcc- crippling stress for the outstanding leg, psi

K = buckling coefficient equal to 1.25 1f the outstanding leg
has only one corner, and equal to 3.62 1f the outstanding leg

hag two corners
E - modulus of elasticity, psi
b t. - thickness of the outstanding leg, inches

w - width of the outstanding leg, inches 1

For nonuniform beam elements, tf and w at the center of the beam are i
used as representative values. i
i Local buckliug or crippling is a minor type of failure com-

pared with reaching ultimate strain or rupture of some portion of the
cross section. Consequently, catastrophic damage for stiffeners and

frames is based on tensile rupture strain in the outer fibers. '

And for clamped beam elements subjected to catastrophic
damage, DEPROB computes a very localized ideal edge strain which can far
exceed usual handbook rupture strain levels prior to actual rupture.

E: Therefore, a strain equal to one-third that computed at the edge is

ﬁ compared with rupture strain levels for catastrophic damage.

5.1.4 Radomes and Other Shells ]

Radomes on various aircraft have different shapes. Some
radomes are best analyzed by the DEPROP program where a curved panel
representation is reasonapbtir:. Other radomes, such as the nose and tail
radomes of the Bl, are conical cor near-cylindrical shells. For these
shapes, a two-dimensional ring representation is reasonable and the
DEPROB program should be used. Since reinforced plastic material which
fractures at ultimate straia 1is used in radomes, 70 percent of tensile
ultimate stress and 100 percent compressive ultimate stress are used for
the threshold of permanent damage, and ultimate tensile strain is used

for catastrophic damage.
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_ DEPROB cun also be used to analyze a metal shell in an approx-
4 imate way when modeled as a free ring. In this case the threshold of

damage criterion is based on tensile and compressive yield stresses,

compared to stresses in the outer fibers. Catastrophic damage is based

4 on tensile strain in the outer fibers exceeding rupture strain.

5.1.5 Rib Webs and Stiffeners

a buckling mode. Modeled as an axially loaded beam with fixed ends

Failure in vertical metal rib elements is assumed to occur in ]
s (except that motion is permitted in the axial direction), threshold of

permanent damage and catastrophic damage are both related to the occur-

1 rence of columm buckling. It should be noted that as a material begins

;. to yield, it quickly loses its resistance to buckling. Although the two
] events are clearly separate phenomena, experience indicates that if for

f‘ increasing levels of load the beam has not buckled by the time it begins
to yleld, it will with very little additional load.

£ Catastrophic damage, then, is defined as the point at which
* the tensile strain in the outer fibers exceeds the tensile ultimate
strain, which will usually closely follow the attainment of tensile
yield strains. Threshold of permanent damage is defined as a maximum

tensile or compressive strain equal to 70Z of yield strain.

For situations in which the rib collapses, the numerical pro-
§ . cedures employed may not be able to keep up with the process. In such
cases, the program assigns a negative number to the maximum response and

proceeds to select a larger range.

SUE S5 pulol oy

5.1.6 Damage Criteria Summary

In summary, damage criteria for panels, stiffeners, frames,

radomes, and ribs are given in table 13 for threshold of permanent
damage, TPD, and catastrophic damage, CD. In general, all spatial
locations on the structural elements are checked in the timewise solu-
. tion in oxder to accumulate the maximum response parameters. While

. DEPROB checks the parameters every time step, DEPROP checks only every
tenth step-a procedure which conserves computer time in the slower

i running DEPROP without significant loss of accuracy.
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TABLE 13

CRITERIA FOR THRESHOLD OF PERMANENT DAMAGE (TPD)
AND CATASTROPHIC DAMAGE (CD)

Program - DEPROP
Structural Element - Panels

Spatial Locations Considered - All spatial integration points

Types of Panels:
1. Single~layered metal

TPD - Compare tensile or compressive yield stress with

Mises-Hencky equivalent stress at inner and outer -Q
surfaces.
CD - Compare rupture strain with effective tensile strain

at inner and outer surfaces.

2. Single-layered plastics

TPD - Compare 70 percent of tensile and 100 percent of
compressive ultimate stresses with principal tensile
and compressive stresses, respectively, at the inner
and outer surfaces.

CD - Compare tensile ultimate stress with principal ten-
sile stresses at inner and outer surfaces.

3. Honeycomb metal

TPD - Compare tensile yield stress with Mises-Hencky equiva-
lent stresses at centers of face sheets; compare the
compressive yield stress with Mises-Hencky equivalent
stress at centers of face sheets; and compare the low-
est of intracell buckling stress and face sheet wrin-
kling stress with maximum principal compressive
stresses at centers of face sheets.

SR
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TABLE 13 (Continued)

4. Honeycomb

PD -

Compare face sheet rupture strain with effective
tensile strains at points on equivalent single-
layered cross section which correspond to the center
of the face sheets of original cross section.

reinforced plastics

Compare 70 percent of tensile ultimate stress with
principal tensile stresses at centers of face sheets;
and compare the lowest of 100 percent compressive
ultimate stress, intracell buckling stress, and face
sheet wrinkling stress with maximum compressive
stresses at cenrers of face sheets.

Compare ultimate tensile stress with principal
tensile stresses at centers of face sheets.

5. Multilavered plastics

D -~

Compare 70 percent of tensile and 100 percent of
compressive ultimate stresses with principal tensile
and compressive stresses, respectively, at inner and
outer surfaces of each layer.

Compare ultimate tensile stress with principal
teasile stresses at inner and outer surfaces of each
layer.

Program - DEPROB

Structural Element - Stiffeners and Frames (beam elements)

Spatial Locations Considered - All bars of beam

PD -

¢ -

More critical of (a) comparison of largest tensile
and compressive stresses on inner and outer fibers
with tensile and compressive yield stresses, respec-
tively; (b) comparison of largest compressive stress
on outstanding leg with the crippling stress.

Compare rupture strain with largest tensile strains
on inner and outer fibers.
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TABLE 13 (Concluded)

é Structural Element - Shells (Free Ring)
Spatial Locations Considered - All Bars of Ring
Types of shells:

1. Reinforced Plastic Radomes

; TPD -~ Compare 70 percent of tensile and 100 percent
) of compressive ultimate stresses with tensile
s and compressive stresses, respectively, at

‘ inner and outer fibers.

: ¢ - Compare ultimate tensile strain with largest
i tensile strains on inner and outer fibers.
: 2. Metal
! TPD - Compare tensile and compressive yield stresses
: with tensile and compressive stresses, respec-
tively, in the inner and outer fibers of each
layer.
¢ - Compare rupture strain with largest tensile

strains on inner and outer fibers.

Structural Element - Ribs (End lLoaded, Clamped Beam Element)

STy

Spatial Locations Consideced - All Bars of Beam

1°D - Compare 70 percent of tensile and compressive
yield stress with largest tensile and com-

4 pressive stresses, respectively, in inner and
outer fibers.

¢h - Compare rupture strain with largest tensile
strains on inner and outer fibers.

Rt tda

bt asiatag

-194-




P———p— B AR b o e

5.2 DETERMINATION OF INACCURACY FACTOR, X

In order to establish the probability of threshold or catastrophic
damage occurring, the inaccuracy factor, X, in equation (142) must be
defined. Note that the determination of X is highly subjective and is
not subject to verification by analysis. Only by comparing a large
group of experimentally produced responses to pressure loads from
nuclear blasts under varying conditions with corresponding calculated

responses could X be determined objectively.

Assuming that the environmental conditions are known exactly, the
largest inaccuracies are assumed to exist in the modeling of the struc-
ture as discrete elements. Values of fractional inaccuracy, X, have
been selected for the various conditions considered and related to
accuracy factors which are given in table 14. These values are very
subjective and represent the best estimates the authors can make based
on their experience in the present and related problems. If the accuracy
factor is 2, the actual response is considered to be within a factor

of 2 of the predicted response. This results in different values of X

(and hence standard deviations) for responses greater than ﬁp(x+) and
less than ﬁp (X") (figure 65). These values of X are related to ACC by

xt =acc -1 (146)

X =1 - g (147)
In terms of probability, if the probability, m, < 0.5, X+ is used in the
program to determine §; if m > 0.5, X~ is used. The accuracy factor is
considered to be more meaningful than a single value of X. For example,
if X were taken as one, there would be an implication that the likeli-
hood of zero response would corresponi to the likelihood cf twice the
predicted response. Such an implicatiin can be rejected on purely
intuitive grounds; hence, the accuracy factor, which avoids this diffi-

culty, seems to be more logical.
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TABLE 14

ACCURACY FACTORS FOR CRITICAL RESPONSES, ACC

Structural Threshold of
Elements Permanent Damage Catastrophic Damage
Single-Layered 1.3 1.8
Metal Panels
Single-Layered 1.3 1.5
Plastic Panels
Honeycomb Metal 1.5 2.0
Panels
Honeycomb Plastic 1.5 1.7
Panels
Multilayered 1.4 1.6
Plastic Panels
Stiffeners 1.3 1.7
Frames 1.5 1.8
Radomes and Other
Free Rings
Metal 1.6 1.8
Plastic 1.6 1.8
Ribs 2.0 2.0
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